12,066 research outputs found

    Commodity and Financial Networks in Regional Economics

    Full text link
    The article discusses the relationship between commodity-production and financial network structures in the regional economy as dual conjugate systems. Material flows (raw materials, goods and so on) circulate in the commodity network as shown by Leontiev’s input-output balance model. Nonmaterial flows of property rights, money, and so on circulate in the financial network and reflect the movement of material objects in commodity networks. A network structure comprises closed and open circuits, which have fundamentally different characteristics: locally closed circuits meet local demand by supplying locally produced goods, thus ensuring self-reproduction of the local economy; open (or transit) circuits provide export-import flows. The article describes the mechanism of ‘internal’ money generation in closed circuits of commodity-production networks. The results of the theoretical study are illustrated by the calculations of closed and open circuit flows in the municipal economy model. Mutual settlements between the population and manufacturing enterprises are given in matrix form. It was found that the volume of the turnover in closed circuits of the municipal economic network model is about 28.5 % of the total turnover and can be provided by ‘internal’ non-inflationary money. The remaining 71.5 % of the total turnover correspond to the flows in the network’s open circuits providing export and import. The conclusion is made that in the innovation-driven economy, main attention should be given to the projects oriented towards domestic consumption rather than export supplies. The economy is based on internal production cycles in closed circuits. Thus, it is necessary to find the chains in the inter-industrial and inter-production relations which could become the basis of the production cycle. Money investments will complete such commodity chains and ‘launch’ the production cycle.The work has been prepared with the supprot of the Ural Federal University within the UrFU Program for the winners of the competition “Young Scientists of UrFU” No. 2.1.1.1-14/43

    Is the number of Photons a Classical Invariant?

    Get PDF
    We describe an apparent puzzle in classical electrodynamics and its resolution. It is concerned with the Lorentz invariance of the classical analog of the number of photons.Comment: Revised version, 3 figure

    Torsion in Buildings Subjected to Earthquakes

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/154131/1/39015094008060.pd

    Torsion in Buildings Subjected to Earthquakes

    Full text link
    National Science Foundationhttp://deepblue.lib.umich.edu/bitstream/2027.42/116059/1/39015094008060.pd

    Evidence for the Role of Instantons in Hadron Structure from Lattice QCD

    Full text link
    Cooling is used as a filter on a set of gluon fields sampling the Wilson action to selectively remove essentially all fluctuations of the gluon field except for the instantons. The close agreement between quenched lattice QCD results with cooled and uncooled configurations for vacuum correlation functions of hadronic currents and for density-density correlation functions in hadronic bound states provides strong evidence for the dominant role of instantons in determining light hadron structure and quark propagation in the QCD vacuum.Comment: 26 pages in REVTeX, plus 10 figures, uuencoded. Submitted to Physical Review D. MIT-CTP-226

    Stacking Entropy of Hard Sphere Crystals

    Full text link
    Classical hard spheres crystallize at equilibrium at high enough density. Crystals made up of stackings of 2-dimensional hexagonal close-packed layers (e.g. fcc, hcp, etc.) differ in entropy by only about 103kB10^{-3}k_B per sphere (all configurations are degenerate in energy). To readily resolve and study these small entropy differences, we have implemented two different multicanonical Monte Carlo algorithms that allow direct equilibration between crystals with different stacking sequences. Recent work had demonstrated that the fcc stacking has higher entropy than the hcp stacking. We have studied other stackings to demonstrate that the fcc stacking does indeed have the highest entropy of ALL possible stackings. The entropic interactions we could detect involve three, four and (although with less statistical certainty) five consecutive layers of spheres. These interlayer entropic interactions fall off in strength with increasing distance, as expected; this fall-off appears to be much slower near the melting density than at the maximum (close-packing) density. At maximum density the entropy difference between fcc and hcp stackings is 0.00115+/0.00004kB0.00115 +/- 0.00004 k_B per sphere, which is roughly 30% higher than the same quantity measured near the melting transition.Comment: 15 page

    The instanton liquid in QCD at zero and finite temperature

    Full text link
    In this paper we study the statistical mechanics of the instanton liquid in QCD. After introducing the partition function as well as the gauge field and quark induced interactions between instantons we describe a method to calculate the free energy of the instanton system. We use this method to determine the equilibrium density and the equation of state from numerical simulations of the instanton ensemble in QCD for various numbers of flavors. We find that there is a critical number of flavors above which chiral symmetry is restored in the groundstate. In the physical case of two light and one intermediate mass flavor the system undergoes a chiral phase transition at T140T\simeq 140 MeV. We show that the mechanism for this transition is a rearrangement of the instanton liquid, going from a disordered, random, phase at low temperatures to a strongly correlated, molecular, phase at high temperature. We also study the behavior of mesonic susceptibilities near the phase transition.Comment: 50 pages, revtex, 16 figures, uuencode

    Scientific, institutional and personal rivalries among Soviet geographers in the late Stalin era

    Get PDF
    Scientific, institutional and personal rivalries between three key centres of geographical research and scholarship (the Academy of Sciences Institute of Geography and the Faculties of Geography at Moscow and Leningrad State Universities) are surveyed for the period from 1945 to the early 1950s. It is argued that the debates and rivalries between members of the three institutions appear to have been motivated by a variety of scientific, ideological, institutional and personal factors, but that genuine scientific disagreements were at least as important as political and ideological factors in influencing the course of the debates and in determining their final outcome

    Hyperfine-mediated transitions between a Zeeman split doublet in GaAs quantum dots: The role of the internal field

    Full text link
    We consider the hyperfine-mediated transition rate between Zeeman split spin states of the lowest orbital level in a GaAs quantum dot. We separate the hyperfine Hamiltonian into a part which is diagonal in the orbital states and another one which mixes different orbitals. The diagonal part gives rise to an effective (internal) magnetic field which, in addition to an external magnetic field, determines the Zeeman splitting. Spin-flip transitions in the dots are induced by the orbital mixing part accompanied by an emission of a phonon. We evaluate the rate for different regimes of applied magnetic field and temperature. The rates we find are bigger that the spin-orbit related rates provided the external magnetic field is sufficiently low.Comment: 8 pages, 3 figure
    corecore