6,448 research outputs found
Non-equilibrium dynamics of gene expression and the Jarzynski equality
In order to express specific genes at the right time, the transcription of
genes is regulated by the presence and absence of transcription factor
molecules. With transcription factor concentrations undergoing constant
changes, gene transcription takes place out of equilibrium. In this paper we
discuss a simple mapping between dynamic models of gene expression and
stochastic systems driven out of equilibrium. Using this mapping, results of
nonequilibrium statistical mechanics such as the Jarzynski equality and the
fluctuation theorem are demonstrated for gene expression dynamics. Applications
of this approach include the determination of regulatory interactions between
genes from experimental gene expression data
Generalized-ensemble Monte carlo method for systems with rough energy landscape
We present a novel Monte Carlo algorithm which enhances equilibrization of
low-temperature simulations and allows sampling of configurations over a large
range of energies. The method is based on a non-Boltzmann probability weight
factor and is another version of the so-called generalized-ensemble techniques.
The effectiveness of the new approach is demonstrated for the system of a small
peptide, an example of the frustrated system with a rugged energy landscape.Comment: Latex; ps-files include
Monte Carlo simulation and global optimization without parameters
We propose a new ensemble for Monte Carlo simulations, in which each state is
assigned a statistical weight , where is the number of states with
smaller or equal energy. This ensemble has robust ergodicity properties and
gives significant weight to the ground state, making it effective for hard
optimization problems. It can be used to find free energies at all temperatures
and picks up aspects of critical behaviour (if present) without any parameter
tuning. We test it on the travelling salesperson problem, the Edwards-Anderson
spin glass and the triangular antiferromagnet.Comment: 10 pages with 3 Postscript figures, to appear in Phys. Rev. Lett
Multicanonical Recursions
The problem of calculating multicanonical parameters recursively is
discussed. I describe in detail a computational implementation which has worked
reasonably well in practice.Comment: 23 pages, latex, 4 postscript figures included (uuencoded
Z-compressed .tar file created by uufiles), figure file corrected
An efficient, multiple range random walk algorithm to calculate the density of states
We present a new Monte Carlo algorithm that produces results of high accuracy
with reduced simulational effort. Independent random walks are performed
(concurrently or serially) in different, restricted ranges of energy, and the
resultant density of states is modified continuously to produce locally flat
histograms. This method permits us to directly access the free energy and
entropy, is independent of temperature, and is efficient for the study of both
1st order and 2nd order phase transitions. It should also be useful for the
study of complex systems with a rough energy landscape.Comment: 4 pages including 4 ps fig
Simultaneous Embeddability of Two Partitions
We study the simultaneous embeddability of a pair of partitions of the same
underlying set into disjoint blocks. Each element of the set is mapped to a
point in the plane and each block of either of the two partitions is mapped to
a region that contains exactly those points that belong to the elements in the
block and that is bounded by a simple closed curve. We establish three main
classes of simultaneous embeddability (weak, strong, and full embeddability)
that differ by increasingly strict well-formedness conditions on how different
block regions are allowed to intersect. We show that these simultaneous
embeddability classes are closely related to different planarity concepts of
hypergraphs. For each embeddability class we give a full characterization. We
show that (i) every pair of partitions has a weak simultaneous embedding, (ii)
it is NP-complete to decide the existence of a strong simultaneous embedding,
and (iii) the existence of a full simultaneous embedding can be tested in
linear time.Comment: 17 pages, 7 figures, extended version of a paper to appear at GD 201
Dual Magnetic Separator for TRIP
The TRIP facility, under construction at KVI, requires the production
and separation of short-lived and rare isotopes. Direct reactions,
fragmentation and fusion-evaporation reactions in normal and inverse kinematics
are foreseen to produce nuclides of interest with a variety of heavy-ion beams
from the superconducting cyclotron AGOR. For this purpose, we have designed,
constructed and commissioned a versatile magnetic separator that allows
efficient injection into an ion catcher, i.e., gas-filled stopper/cooler or
thermal ionizer, from which a low energy radioactive beam will be extracted.
The separator performance was tested with the production and clean separation
of Na ions, where a beam purity of 99.5% could be achieved. For
fusion-evaporation products, some of the features of its operation as a
gas-filled recoil separator were tested.Comment: accepted by Nucl.Instr. Meth., final versio
Aspects of Cooling at the TRIP Facility
The TriP facility at KVI is dedicated to provide short lived radioactive
isotopes at low kinetic energies to users. It comprised different cooling
schemes for a variety of energy ranges, from GeV down to the neV scale. The
isotopes are produced using beam of the AGOR cyclotron at KVI. They are
separated from the primary beam by a magnetic separator. A crucial part of such
a facility is the ability to stop and extract isotopes into a low energy
beamline which guides them to the experiment. In particular we are
investigating stopping in matter and buffer gases. After the extraction the
isotopes can be stored in neutral atoms or ion traps for experiments. Our
research includes precision studies of nuclear -decay through
- momentum correlations as well as searches for permanent electric
dipole moments in heavy atomic systems like radium. Such experiments offer a
large potential for discovering new physics.Comment: COOL05 Workshop, Galena, Il, USA, 18-23. Sept. 2005, 5 pages, 3
figure
Partition Function Zeros and Finite Size Scaling of Helix-Coil Transitions in a Polypeptide
We report on multicanonical simulations of the helix-coil transition of a
polypeptide. The nature of this transition was studied by calculating partition
function zeros and the finite-size scaling of various quantities. Estimates for
critical exponents are presented.Comment: RevTex, 4 eps-files; to appear in Phys. Rev. Le
Dynamics of gene expression and the regulatory inference problem
From the response to external stimuli to cell division and death, the
dynamics of living cells is based on the expression of specific genes at
specific times. The decision when to express a gene is implemented by the
binding and unbinding of transcription factor molecules to regulatory DNA.
Here, we construct stochastic models of gene expression dynamics and test them
on experimental time-series data of messenger-RNA concentrations. The models
are used to infer biophysical parameters of gene transcription, including the
statistics of transcription factor-DNA binding and the target genes controlled
by a given transcription factor.Comment: revised version to appear in Europhys. Lett., new titl
- …