21 research outputs found

    Inferring the Scale of OpenStreetMap Features

    Get PDF
    International audienceTraditionally, national mapping agencies produced datasets and map products for a low number of specified and internally consistent scales, i.e. at a common level of detail (LoD). With the advent of projects like OpenStreetMap, data users are increasingly confronted with the task of dealing with heterogeneously detailed and scaled geodata. Knowing the scale of geodata is very important for mapping processes such as for generalization of label placement or land-cover studies for instance. In the following chapter, we review and compare two concurrent approaches at automatically assigning scale to OSM objects. The first approach is based on a multi-criteria decision making model, with a rationalist approach for defining and parameterizing the respective criteria, yielding five broad LoD classes. The second approach attempts to identify a single metric from an analysis process, which is then used to interpolate a scale equivalence. Both approaches are combined and tested against well-known Corine data, resulting in an improvement of the scale inference process. The chapter closes with a presentation of the most pressing open problem

    Retinal optical coherence tomography in neuromyelitis optica

    Get PDF
    BACKGROUND AND OBJECTIVES: To determine optic nerve and retinal damage in aquaporin-4 antibody (AQP4-IgG)-seropositive neuromyelitis optica spectrum disorders (NMOSD) in a large international cohort after previous studies have been limited by small and heterogeneous cohorts. METHODS: The cross-sectional Collaborative Retrospective Study on retinal optical coherence tomography (OCT) in neuromyelitis optica collected retrospective data from 22 centers. Of 653 screened participants, we included 283 AQP4-IgG-seropositive patients with NMOSD and 72 healthy controls (HCs). Participants underwent OCT with central reading including quality control and intraretinal segmentation. The primary outcome was thickness of combined ganglion cell and inner plexiform (GCIP) layer; secondary outcomes were thickness of peripapillary retinal nerve fiber layer (pRNFL) and visual acuity (VA). RESULTS: Eyes with ON (NMOSD-ON, N = 260) or without ON (NMOSD-NON, N = 241) were assessed compared with HCs (N = 136). In NMOSD-ON, GCIP layer (57.4 ± 12.2 μm) was reduced compared with HC (GCIP layer: 81.4 ± 5.7 μm, p < 0.001). GCIP layer loss (-22.7 μm) after the first ON was higher than after the next (-3.5 μm) and subsequent episodes. pRNFL observations were similar. NMOSD-NON exhibited reduced GCIP layer but not pRNFL compared with HC. VA was greatly reduced in NMOSD-ON compared with HC eyes, but did not differ between NMOSD-NON and HC. DISCUSSION: Our results emphasize that attack prevention is key to avoid severe neuroaxonal damage and vision loss caused by ON in NMOSD. Therapies ameliorating attack-related damage, especially during a first attack, are an unmet clinical need. Mild signs of neuroaxonal changes without apparent vision loss in ON-unaffected eyes might be solely due to contralateral ON attacks and do not suggest clinically relevant progression but need further investigation

    Cohort profile: a collaborative multicentre study of retinal optical coherence tomography in 539 patients with neuromyelitis optica spectrum disorders (CROCTINO)

    Get PDF
    PURPOSE: Optical coherence tomography (OCT) captures retinal damage in neuromyelitis optica spectrum disorders (NMOSD). Previous studies investigating OCT in NMOSD have been limited by the rareness and heterogeneity of the disease. The goal of this study was to establish an image repository platform, which will facilitate neuroimaging studies in NMOSD. Here we summarise the profile of the Collaborative OCT in NMOSD repository as the initial effort in establishing this platform. This repository should prove invaluable for studies using OCT to investigate NMOSD. PARTICIPANTS: The current cohort includes data from 539 patients with NMOSD and 114 healthy controls. These were collected at 22 participating centres from North and South America, Asia and Europe. The dataset consists of demographic details, diagnosis, antibody status, clinical disability, visual function, history of optic neuritis and other NMOSD defining attacks, and OCT source data from three different OCT devices. FINDINGS TO DATE: The cohort informs similar demographic and clinical characteristics as those of previously published NMOSD cohorts. The image repository platform and centre network continue to be available for future prospective neuroimaging studies in NMOSD. For the conduct of the study, we have refined OCT image quality criteria and developed a cross-device intraretinal segmentation pipeline. FUTURE PLANS: We are pursuing several scientific projects based on the repository, such as analysing retinal layer thickness measurements, in this cohort in an attempt to identify differences between distinct disease phenotypes, demographics and ethnicities. The dataset will be available for further projects to interested, qualified parties, such as those using specialised image analysis or artificial intelligence applications

    A diagnostic toolbox for assessing point data generalisation algorithms

    Full text link

    Real-time generalization of point data in mobile and web mapping using quadtrees

    Full text link
    With a focus on mobile and web mapping, we propose several algorithms for on-the-fly generalization of point data, such as points of interest (POIs) or large point collections. In order to achieve real-time performance we use a quadtree data structure. With their hierarchical subdivision structure and progressive levels of detail, indices of the quadtree family lend themselves as auxiliary data structures to support algorithms for generalization operations, including selection, simplification, aggregation, and displacement of point data. The spatial index can further be used to generate several local and global measures that can then serve to make educated guesses on the density and proximity of points across map scales, and thus enable control of the operation of the generalization algorithms. An implementation of the proposed algorithms has shown that thanks to the quadtree index, real-time performance can be achieved even for large point sets. Furthermore, the quadtree data structure can be extended into a caching structure, which can be used to store pre-computed generalizations; thus, a desired level of detail can simply be retrieved from cache

    A change of theme: The role of generalization in thematic mapping

    Get PDF
    Cartographic generalization research has focused almost exclusively in recent years on topographic mapping, and has thereby gained an incorrect reputation for having to do only with reference or positional data. The generalization research community needs to broaden its scope to include thematic cartography and geovisualization. Generalization is not new to these areas of cartography, and has in fact always been involved in thematic geographic visualization, despite rarely being acknowledged. We illustrate this involvement with several examples of famous, public-audience thematic maps, noting the generalization procedures involved in drawing each, both across their basemap and thematic layers. We also consider, for each map example we note, which generalization operators were crucial to the formation of the map’s thematic message. The many incremental gains made by the cartographic generalization research community while treating reference data can be brought to bear on thematic cartography in the same way they were used implicitly on the well-known thematic maps we highlight here as examples

    The use of filters for adaptive mobile mapping scenarios

    Full text link
    Location based services should communicate information that is relevant to the user and personalized to his/her interests and needs. Existing LBS exploit ancillary information such as the user’s position, user profile, or time of day to personalize information delivery. However, there are a variety of information sources that remain largely untapped in current LBS. These include data from other applications on the mobile device, Web 2.0 sources, or special sensors. They have the inherent ability to define relevant places, events, activities for the particular user; they also allow to derive spatio-temporal behavior patterns that adapt to context. Using appropriate filters, user-specific information can be mined from these additional ancillary data sources, hence allowing to minimize user interaction, better personalize content, and generate more meaningful real-time map displays. This extended abstract hence proposes the use of different filters to further enable adaptation of mobile map applications to the user and his/her context

    The dimensions of context and its role in mobile information retrieval

    No full text
    corecore