92 research outputs found

    Role of hepatocyte growth factor in the immunomodulation potential of amniotic fluid stem cells

    Get PDF
    Human amniotic fluid stem cells (hAFSCs) may be useful for regenerative medicine because of their potential to differentiate into all three germ layers and to modulate immune response with different types of secretion molecules. This last issue has not been completely elucidated. The aim of this study was to investigate the secretome profile of the hAFSC, focusing on the role of hepatocyte growth factor (HGF) in immunoregulation through short and long cocultures with human peripheral blood mononuclear cells. We found that HGF produced by hAFSCs exerts a cytoprotective role, inducing an increase in caspase-dependent apoptosis in human immune cells. This study provides evidence supporting the hypothesis that amniotic fluid is an ideal source of stem cells for expansion and banking properties for therapeutic use. hAFSCs not only are less immunogenic but also can secrete immunoregulatory factors that may be useful in autoimmune diseases or allogenic implants. SIGNIFICANCE: New information about the secretome pattern is reported in this paper. Human amniotic fluid stem cells (hAFSCs) possess immunomodulatory properties involving hepatocyte growth factor production. hAFSCs could be used in immunotherapies and might be able to avoid allogenic rejectio

    Nuclear Nox4-derived reactive oxygen species in myelodysplastic syndromes

    Get PDF
    A role for intracellular ROS production has been recently implicated in the pathogenesis and progression of a wide variety of neoplasias. ROS sources, such as NAD(P)H oxidase (Nox) complexes, are frequently activated in AML (acute myeloid leukemia) blasts and strongly contribute to their proliferation, survival, and drug resistance. Myelodysplastic syndromes (MDS) comprise a heterogeneous group of disorders characterized by ineffective hematopoiesis, with an increased propensity to develop AML. The molecular basis for MDS progression is unknown, but a key element in MDS disease progression is the genomic instability. NADPH oxidases are now recognized to have specific subcellular localizations, this targeting to specific compartments for localized ROS production. Local Nox-dependent ROS production in the nucleus may contribute to the regulation of redox-dependent cell growth, differentiation, senescence, DNA damage, and apoptosis. We observed that Nox1, 2, and 4 isoforms and p22phox and Rac1 subunits are expressed in MDS/AML cell lines and MDS samples, also in the nuclear fractions. Interestingly, Nox4 interacts with ERK and Akt1 within nuclear speckle domain, suggesting that Nox4 could be involved in regulating gene expression and splicing factor activity. These data contribute to the elucidation of the molecular mechanisms used by nuclear ROS to drive MDS evolution to AML

    Pigmented Nodular Basal Cell Carcinomas in Differential Diagnosis with Nodular Melanomas: Confocal Microscopy as a Reliable Tool for In Vivo Histologic Diagnosis

    Get PDF
    Nodular basal cell carcinoma, especially when pigmented, can be in differential diagnosis with nodular melanomas, clinically and dermoscopically. Reflectance confocal microscopy is a relatively new imaging technique that permits to evaluate in vivo skin tumors with a nearly histological resolution. Here, we present four cases of challenging nodular lesions where confocal microscopy was able to clarify the diagnosis

    DEVELOPMENT OF A NOVEL METHOD FOR AMNIOTIC FLUID STEM CELL STORAGE

    Get PDF
    Background - Current procedures for collection of human Amniotic Fluid Stem Cells (hAFSCs) imply that amniotic fluid cells were cultured in flask for two weeks, than can be devoted to research purpose. However, hAFSCs could be retrieved directly from a small amount of amniotic fluid that can be obtained at the time of diagnostic amniocentesis. The aim of the study was to verify if a direct freezing of amniotic fluid cells is able to maintain and / or improve the potential of the sub-population of stem cells. Methods - We compared the potential of the hAFSCs depending on the moment in which they are frozen, cells obtained directly from amniotic fluid aspiration (D samples) and cells cultured in flask before freezing (C samples). Colony-forming-unit ability, proliferation, morphology, stemness-related marker expression, senescence, apoptosis, and differentiation potential of C and D samples were compared. Results - hAFSCs isolated from D samples expressed MSC markers until later passages, had a good proliferation rate, and exhibited differentiation capacity similar to hAFSCs of C samples. Interestingly, the direct freezing induce a higher concentration of cells positive for pluripotency stem cell markers, without teratoma formation in vivo. Conclusions - This study suggests that minimal processing may be adequate for the banking of amniotic fluid cells, avoiding in vitro passages before the storage and exposure to high oxygen concentration affecting stem cell properties. This technique might be a reasonable approach in terms of costs and for the process of accreditation in GMP for a stem cell bank

    Ankrd2/ARPP is a novel Akt2 specific substrate andregulates myogenic differentiation upon cellular exposure to H(2)O(2).

    Get PDF
    Activation of Akt-mediated signaling pathways is crucial for survival, differentiation, and regeneration of muscle cells. A proteomic-based search for novel substrates of Akt was therefore undertaken in C(2)C(12) murine muscle cells exploiting protein characterization databases in combination with an anti-phospho-Akt substrate antibody. A Scansite database search predicted Ankrd2 (Ankyrin repeat domain protein 2, also known as ARPP) as a novel substrate of Akt. In vitro and in vivo studies confirmed that Akt phosphorylates Ankrd2 at Ser-99. Moreover, by kinase assay with recombinant Akt1 and Akt2, as well as by single-isoform silencing, we demonstrated that Ankrd2 is a specific substrate of Akt2. Ankrd2 is typically found in skeletal muscle cells, where it mediates the transcriptional response to stress conditions. In an attempt to investigate the physiological implications of Ankrd2 phosphorylation by Akt2, we found that oxidative stress induced by H(2)O(2) triggers this phosphorylation. Moreover, the forced expression of a phosphorylation-defective mutant form of Ankrd2 in C(2)C(12) myoblasts promoted a faster differentiation program, implicating Akt-dependent phosphorylation at Ser-99 in the negative regulation of myogenesis in response to stress conditions

    Inhibition of nuclear nox4 activity by plumbagin: effect on proliferative capacity in human amniotic stem cells.

    Get PDF
    Human amniotic fluid stem cells (AFSC) with multilineage differentiation potential are novel source for cell therapy. However, in vitro expansion leads to senescence affecting differentiation and proliferative capacities. Reactive oxygen species (ROS) have been involved in the regulation of stem cell pluripotency, proliferation, and differentiation. Redox-regulated signal transduction is coordinated by spatially controlled production of ROS within subcellular compartments. NAD(P)H oxidase family, in particular Nox4, has been known to produce ROS in the nucleus; however, the mechanisms and the meaning of this function remain largely unknown. In the present study, we show that Nox4 nuclear expression (nNox4) increases during culture passages up to cell cycle arrest and the serum starvation causes the same effect. With the decrease of Nox4 activity, obtained with plumbagin, a decline of nuclear ROS production and of DNA damage occurs. Moreover, plumbagin exposure reduces the binding between nNox4 and nucleoskeleton components, as Matrin 3. The same effect was observed also for the binding with phospho-ERK, although nuclear ERK and P-ERK are unchanged. Taken together, we suggest that nNox4 regulation may have important pathophysiologic effects in stem cell proliferation through modulation of nuclear signaling and DNA damage

    Unravelling Heterogeneity of Amplified Human Amniotic Fluid Stem Cells Sub-Populations

    Get PDF
    Human amniotic fluid stem cells (hAFSCs) are broadly multipotent immature progenitor cells with high self-renewal and no tumorigenic properties. These cells, even amplified, present very variable morphology, density, intracellular composition and stemness potential, and this heterogeneity can hinder their characterization and potential use in regenerative medicine. Celector\uae (Stem Sel ltd.) is a new technology that exploits the Non-Equilibrium Earth Gravity Assisted Field Flow Fractionation principles to characterize and label-free sort stem cells based on their solely physical characteristics without any manipulation. Viable cells are collected and used for further studies or direct applications. In order to understand the intrapopulation heterogeneity, various fractions of hAFSCs were isolated using the Celector\uae profile and live imaging feature. The gene expression profile of each fraction was analysed using whole-transcriptome sequencing (RNAseq). Gene Set Enrichment Analysis identified significant differential expression in pathways related to Stemness, DNA repair, E2F targets, G2M checkpoint, hypoxia, EM transition, mTORC1 signalling, Unfold Protein Response and p53 signalling. These differences were validated by RT-PCR, immunofluorescence and differentiation assays. Interestingly, the different fractions showed distinct and unique stemness properties. These results suggest the existence of deep intra-population differences that can influence the stemness profile of hAFSCs. This study represents a proof-of-concept of the importance of selecting certain cellular fractions with the highest potential to use in regenerative medicine

    Human amniotic fluid-derived and dental pulp-derived stem cells seeded into collagen scaffold repair critical-size bone defects promoting vascularization

    Get PDF
    INTRODUCTION: The main aim of this study is to evaluate potential human stem cells, such as dental pulp stem cells and amniotic fluid stem cells, combined with collagen scaffold to reconstruct critical-size cranial bone defects in an animal model. METHODS: We performed two symmetric full-thickness cranial defects on each parietal region of rats and we replenished them with collagen scaffolds with or without stem cells already seeded into and addressed towards osteogenic lineage in vitro. After 4 and 8 weeks, cranial tissue samples were taken for histological and immunofluorescence analysis. RESULTS: We observed a new bone formation in all of the samples but the most relevant differences in defect correction were shown by stem cell–collagen samples 4 weeks after implant, suggesting a faster regeneration ability of the combined constructs. The presence of human cells in the newly formed bone was confirmed by confocal analysis with an antibody directed to a human mitochondrial protein. Furthermore, human cells were found to be an essential part of new vessel formation in the scaffold. CONCLUSION: These data confirmed the strong potential of bioengineered constructs of stem cell–collagen scaffold for correcting large cranial defects in an animal model and highlighting the role of stem cells in neovascularization during skeletal defect reconstruction

    Nuclear Nox4 Interaction with Prelamin A is Associated with Nuclear Redox Control of Stem Cell Aging

    Get PDF
    Mesenchymal stem cells have emerged as an important tool that can be used for tissue regeneration thanks to their easy preparation, differentiation potential and immunomodulatory activity. However, an extensive culture of stem cells in vitro prior to clinical use can lead to oxidative stress that can modulate different stem cells properties, such as self-renewal, proliferation, differentiation and senescence. The aim of this study was to investigate the aging process occurring during in vitro expansion of stem cells, obtained from amniotic fluids (AFSC) at similar gestational age. The analysis of 21 AFSC samples allowed to classify them in groups with different levels of stemness properties. In summary, the expression of pluripotency genes and the proliferation rate were inversely correlated with the content of reactive oxygen species (ROS), DNA damage signs and the onset premature aging markers, including accumulation of prelamin A, the lamin A immature form. Interestingly, a specific source of ROS, the NADPH oxidase isoform 4 (Nox4), can localize into PML nuclear bodies (PML-NB), where it associates to prelamin A. Besides, Nox4 post translational modification, involved in PML-NB localization, is linked to its degradation pathway, as it is also for prelamin A, thus possibly modulating the premature aging phenotype occurrence

    NADPH oxidase-4 and MATER expressions in granulosa cells: Relationships with ovarian aging

    Get PDF
    Aims Relevant roles in follicular development and ovulation are played by maternal antigen that embryos require (MATER), product of a maternal effect gene, and by reactive oxygen species (ROS), indispensable for the induction of ovulatory genes. At the moment, the relationship between these two biological systems and their involvement in the ovarian aging have not been still clarified. The aim of the current experimental study was to analyse the age-related changes of the MATER and NOX proteins. Materials and methods MATER and ROS homeostasis was studied in granulosa cells (GCs) and cumulus cells (CCs) of infertile patients who undergone oocyte retrieval for in vitro fertilization cycles using Western blot and confocal immunofluorescence analysis. Samples were obtained from subjects with age\ua0 65\ua040\ua0years (cases) and with age\ua0 64\ua037\ua0years (controls). Key findings The expression pattern of MATER and NOX observed in GCs was not different from that observed in CCs. High levels of both proteins were detected in the control samples. A significant lower expression of both MATER and NOX4 was observed in the case versus control samples. Significance The expression of MATER and NOX4 proteins are closely related to the follicular development and ovulation with particular regard for ovarian aging
    corecore