20 research outputs found

    Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide-chalcogenide fiber

    Get PDF
    This contribution reports on detailed experimental and numerical investigations of both near-infrared (NIR) and mid-infrared (MIR) photoluminescence obtained in praseodymium trivalent ion doped chalcogenide-selenide glass fiber. The experimental analysis allows for the identification of the radiative transitions within the praseodymium ion energy level structure to account for the photoluminescent behavior. Numerical analysis is carried out using the rate equations’ approach to calculate the level populations. The numerical analysis provides further insight into the nature of the radiative transitions in the Pr3+ ion doped chalcogenide-selenide glass and allows for the identification of the electronic transitions, which contribute to the observed photoluminescence. The numerical results agree well with the experimental results

    Experimental investigation of mid-infrared laser action from DY3+ doped fluorozirconate fiber

    Get PDF
    Efficient continuous-wave laser operation at 2.982 μm is achieved with a Dy3:fluoride fiber pumped using an inhouse-built 1.1 μm ytterbium (III) fiber laser. The laser output power reached is 554 mW, with a maximum slope efficiency of 18% with respect to the launched pump power. Additionally, the measured spontaneous luminescence within the visible wavelength range, under 1.1 μm pumping, is presented and attributed to excited state absorption (ESA). The influence of the ESA on the laser performance is discussed. The results confirm that high output powers from Dy: fluoride fiber laser pumped at 1.1 μm are possible

    >

    No full text

    >

    No full text

    >

    No full text

    >

    No full text

    >

    No full text
    corecore