161 research outputs found
Allogeneic Astrocytoma In Immune Competent Dogs
AbstractWe have induced in canines long-term immune tolerance to an allogeneic cell line derived from a spontaneous canine astrocytoma. Allogeneic astrocytoma cells were implanted endoscopically into the subcutaneous space of fetal dogs before the onset of immune competency (<40th gestational day). At adulthood, dogs rendered tolerant successfully serve as recipients of intracranial transplants of their growing allogeneic, subcutaneous tumor. Transplanted dogs subsequently develop a solid brain tumor with histological features similar to the original astrocytoma. This model may allow rapid development and evaluation of new therapies for brain tumors, as well as afford tumor biology studies that are untenable in smaller, immune incompetent, or inbred animals harboring less representative tumors
Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition.
Acquired drug resistance prevents cancer therapies from achieving stable and complete responses. Emerging evidence implicates a key role for non-mutational drug resistance mechanisms underlying the survival of residual cancer 'persister' cells. The persister cell pool constitutes a reservoir from which drug-resistant tumours may emerge. Targeting persister cells therefore presents a therapeutic opportunity to impede tumour relapse. We previously found that cancer cells in a high mesenchymal therapy-resistant cell state are dependent on the lipid hydroperoxidase GPX4 for survival. Here we show that a similar therapy-resistant cell state underlies the behaviour of persister cells derived from a wide range of cancers and drug treatments. Consequently, we demonstrate that persister cells acquire a dependency on GPX4. Loss of GPX4 function results in selective persister cell ferroptotic death in vitro and prevents tumour relapse in mice. These findings suggest that targeting of GPX4 may represent a therapeutic strategy to prevent acquired drug resistance
Evaluation of pre-analytical factors affecting plasma DNA analysis.
Pre-analytical factors can significantly affect circulating cell-free DNA (cfDNA) analysis. However, there are few robust methods to rapidly assess sample quality and the impact of pre-analytical processing. To address this gap and to evaluate effects of DNA extraction methods and blood collection tubes on cfDNA yield and fragment size, we developed a multiplexed droplet digital PCR (ddPCR) assay with 5 short and 4 long amplicons targeting single copy genomic loci. Using this assay, we compared 7 cfDNA extraction kits and found cfDNA yield and fragment size vary significantly. We also compared 3 blood collection protocols using plasma samples from 23 healthy volunteers (EDTA tubes processed within 1 hour and Cell-free DNA Blood Collection Tubes processed within 24 and 72 hours) and found no significant differences in cfDNA yield, fragment size and background noise between these protocols. In 219 clinical samples, cfDNA fragments were shorter in plasma samples processed immediately after venipuncture compared to archived samples, suggesting contribution of background DNA by lysed peripheral blood cells. In summary, we have described a multiplexed ddPCR assay to assess quality of cfDNA samples prior to downstream molecular analyses and we have evaluated potential sources of pre-analytical variation in cfDNA studies
Multiscale, multimodal analysis of tumor heterogeneity in IDH1 mutant vs wild-type diffuse gliomas.
Glioma is recognized to be a highly heterogeneous CNS malignancy, whose diverse cellular composition and cellular interactions have not been well characterized. To gain new clinical- and biological-insights into the genetically-bifurcated IDH1 mutant (mt) vs wildtype (wt) forms of glioma, we integrated data from protein, genomic and MR imaging from 20 treatment-naïve glioma cases and 16 recurrent GBM cases. Multiplexed immunofluorescence (MxIF) was used to generate single cell data for 43 protein markers representing all cancer hallmarks, Genomic sequencing (exome and RNA (normal and tumor) and magnetic resonance imaging (MRI) quantitative features (protocols were T1-post, FLAIR and ADC) from whole tumor, peritumoral edema and enhancing core vs equivalent normal region were also collected from patients. Based on MxIF analysis, 85,767 cells (glioma cases) and 56,304 cells (GBM cases) were used to generate cell-level data for 24 biomarkers. K-means clustering was used to generate 7 distinct groups of cells with divergent biomarker profiles and deconvolution was used to assign RNA data into three classes. Spatial and molecular heterogeneity metrics were generated for the cell data. All features were compared between IDH mt and IDHwt patients and were finally combined to provide a holistic/integrated comparison. Protein expression by hallmark was generally lower in the IDHmt vs wt patients. Molecular and spatial heterogeneity scores for angiogenesis and cell invasion also differed between IDHmt and wt gliomas irrespective of prior treatment and tumor grade; these differences also persisted in the MR imaging features of peritumoral edema and contrast enhancement volumes. A coherent picture of enhanced angiogenesis in IDHwt tumors was derived from multiple platforms (genomic, proteomic and imaging) and scales from individual proteins to cell clusters and heterogeneity, as well as bulk tumor RNA and imaging features. Longer overall survival for IDH1mt glioma patients may reflect mutation-driven alterations in cellular, molecular, and spatial heterogeneity which manifest in discernable radiological manifestations
Importance of the intersection of age and sex to understand variation in incidence and survival for primary malignant gliomas
BACKGROUND: Gliomas are the most common type of malignant brain and other CNS tumors, accounting for 80.8% of malignant primary brain and CNS tumors. They cause significant morbidity and mortality. This study investigates the intersection between age and sex to better understand variation of incidence and survival for glioma in the United States.
METHODS: Incidence data from 2000 to 2017 were obtained from CBTRUS, which obtains data from the NPCR and SEER, and survival data from the CDC\u27s NPCR. Age-adjusted incidence rate ratios (IRR) per 100 000 were generated to compare male-to-female incidence by age group. Cox proportional hazard models were performed by age group, generating hazard ratios to assess male-to-female survival differences.
RESULTS: Overall, glioma incidence was higher in males. Male-to-female incidence was lowest in ages 0-9 years (IRR: 1.04, 95% CI: 1.01-1.07, P = .003), increasing with age, peaking at 50-59 years (IRR: 1.56, 95% CI: 1.53-1.59, P \u3c .001). Females had worse survival for ages 0-9 (HR: 0.93, 95% CI: 0.87-0.99), though male survival was worse for all other age groups, with the difference highest in those 20-29 years (HR: 1.36, 95% CI: 1.28-1.44). Incidence and survival differences by age and sex also varied by histological subtype of glioma.
CONCLUSIONS: To better understand the variation in glioma incidence and survival, investigating the intersection of age and sex is key. The current work shows that the combined impact of these variables is dependent on glioma subtype. These results contribute to the growing understanding of sex and age differences that impact cancer incidence and survival
Glioma cells on the run – the migratory transcriptome of 10 human glioma cell lines
<p>Abstract</p> <p>Background</p> <p>Glioblastoma multiforme (GBM) is the most common primary intracranial tumor and despite recent advances in treatment regimens, prognosis for affected patients remains poor. Active cell migration and invasion of GBM cells ultimately lead to ubiquitous tumor recurrence and patient death.</p> <p>To further understand the genetic mechanisms underlying the ability of glioma cells to migrate, we compared the matched transcriptional profiles of migratory and stationary populations of human glioma cells. Using a monolayer radial migration assay, motile and stationary cell populations from seven human long term glioma cell lines and three primary GBM cultures were isolated and prepared for expression analysis.</p> <p>Results</p> <p>Gene expression signatures of stationary and migratory populations across all cell lines were identified using a pattern recognition approach that integrates <it>a priori </it>knowledge with expression data. Principal component analysis (PCA) revealed two discriminating patterns between migrating and stationary glioma cells: i) global down-regulation and ii) global up-regulation profiles that were used in a proband-based rule function implemented in GABRIEL to find subsets of genes having similar expression patterns. Genes with up-regulation pattern in migrating glioma cells were found to be overexpressed in 75% of human GBM biopsy specimens compared to normal brain. A 22 gene signature capable of classifying glioma cultures based on their migration rate was developed. Fidelity of this discovery algorithm was assessed by validation of the invasion candidate gene, connective tissue growth factor (CTGF). siRNA mediated knockdown yielded reduced <it>in vitro </it>migration and <it>ex vivo </it>invasion; immunohistochemistry on glioma invasion tissue microarray confirmed up-regulation of CTGF in invasive glioma cells.</p> <p>Conclusion</p> <p>Gene expression profiling of migratory glioma cells induced to disperse <it>in vitro </it>affords discovery of genomic signatures; selected candidates were validated clinically at the transcriptional and translational levels as well as through functional assays thereby underscoring the fidelity of the discovery algorithm.</p
- …