875 research outputs found

    Weyl-van-der-Waerden formalism for helicity amplitudes of massive particles

    Get PDF
    The Weyl-van-der-Waerden spinor technique for calculating helicity amplitudes of massive and massless particles is presented in a form that is particularly well suited to a direct implementation in computer algebra. Moreover, we explain how to exploit discrete symmetries and how to avoid unphysical poles in amplitudes in practice. The efficiency of the formalism is demonstrated by giving explicit compact results for the helicity amplitudes of the processes gamma gamma -> f fbar, f fbar -> gamma gamma gamma, mu^- mu^+ -> f fbar gamma.Comment: 24 pages, late

    Improved Phase Space Treatment of Massive Multi-Particle Final States

    Full text link
    In this paper the revised Kajantie-Byckling approach and improved phase space sampling techniques for the massive multi-particle final states are presented. The application of the developed procedures to the processes representative for LHC physics indicates the possibility of a substantial simplification of multi-particle phase space sampling while retaining a respectable weight variance reduction and unweighing efficiencies in the event generation process.Comment: Minor stilistic changes, submitted to EPJ

    Amplitudes With Different Helicity Configurations Of Noncommutative QED

    Get PDF
    The amplitudes of purely photonic and photon{2-fermion processes of non- commutative QED (NCQED) are derived for different helicity configurations of photons. The basic ingredient is the NCQED counterpart of Yang-Mills recursion relations by means of Berends and Giele. The explicit solutions of recursion relations for NCQED photonic processes with special helicity configurations are presented.Comment: 23 pages, 2 figure

    Multiphoton Production at High Energies in the Standard Model I

    Full text link
    We examine multiphoton production in the electroweak sector of the Standard Model in the high energy limit using the equivalence theorem in combination with spinor helicity techniques. We obtain recursion relations for currents consisting of a charged scalar, spinor, or vector line that radiates nn photons. Closed form solutions to these recursion relations for arbitrary nn are presented for the cases of like-helicity and one unlike-helicity photon production. We apply the currents singly and in pairs to obtain amplitudes for processes involving the production of nn photons with up to two unlike helicities from a pair of charged particles. The replacement of one or more photons by transversely polarized Z$-bosons is also discussed.Comment: 75 pages, CLNS 91/111

    Signatures for Majorana neutrinos in eγe^- \gamma collider

    Full text link
    We study the possibilities to detect Majorana neutrinos in eγe^- \gamma colliders for different center of mass energies. We study the WWlj+(lj+e+,μ+,τ+)W^- W^- l_j^{+}(l_j^+\equiv e^+ ,\mu^+ ,\tau^+) final state which are, due to leptonic number violation, a clear signature for intermediate Majorana neutrino contribution. Such a signal (final lepton have the opposite charge of the initial lepton) is not possible if the heavy neutrinos are Dirac particles. In our calculation we use the helicity formalism to obtain analytic expressions for the amplitude and we have considered that the intermediate neutrinos can be either on shell or off shell. Finally we present our results for the total cross-section and for the angular distribution of the final lepton. We also include a discussion on the expected events number as a function of the input parameters.Comment: Latex file with 12 pages and 6 figures. Submited to Phys. Rev.

    Color separate singlets in e+ee^+e^- annihilation

    Get PDF
    We use the method of color effective Hamiltonian to study the properties of states in which a gluonic subsystem forms a color singlet, and we will study the possibility that such a subsystem hadronizes as a separate unit. A parton system can normally be subdivided into singlet subsystems in many different ways, and one problem arises from the fact that the corresponding states are not orthogonal. We show that if only contributions of order 1/Nc21/N_c^2 are included, the problem is greatly simplified. Only a very limited number of states are possible, and we present an orthogonalization procedure for these states. The result is simple and intuitive and could give an estimate of the possibility to produce color separated gluonic subsystems, if no dynamical effects are important. We also study with a simple MC the possibility that configurations which correspond to "short strings" are dynamically favored. The advantage of our approach over more elaborate models is its simplicity, which makes it easier to estimate color reconnection effects in reactions which are more complicated than the relatively simple e+ee^+e^- annihilation.Comment: Revtex, 24 pages, 7 figures; Compared to the previous version, 1 new figure is added and Monte-Carlo results are re-analyzed, as suggested by the referee; To appear in Phys. Rev.

    The Analysis of Multijet Events Produced at High Energy Hadron Colliders

    Get PDF
    We define and discuss a set of (4N - 4) parameters that can be used to analyse events in which N jets have been produced in high energy hadron-hadron collisions. These multijet variables are the multijet mass and (4N - 5) independent dimensionless parameters. To illustrate the use of the variables QCD predictions are presented for events with up to five jets produced at the Fermilab Tevatron Proton-Antiproton Collider. These QCD predictions are compared with the predictions of a model in which multijet events uniformly populate the N-body phase-space

    Prospects of Open Charm Production at GSI-FAIR and J-PARC

    Full text link
    We present a detailed phenomenological study of the prospects of open charm physics at the future pˉp\bar{p}p and pppp facilities GSI-FAIR and J-PARC, respectively. In particular, we concentrate on differential cross sections and the charge and longitudinal double-spin asymmetries at next-to-leading order accuracy. Theoretical uncertainties for the proposed observables are estimated by varying the charm quark mass and the renormalization and factorization scales.Comment: 11 pages, 13 figure

    Signals for Double Parton Scattering at the Fermilab Tevatron

    Get PDF
    Four double-parton scattering processes are examined at the Fermilab Tevatron energy. With optimized kinematical cuts and realistic parton level simulation for both signals and backgrounds, we find large samples of four-jet and three-jet+one-photon events with signal to background ratio being 20\%-30\%, and much cleaner signals from two-jet+two-photon and two-jet+e+ee^+e^- final states. The last channel may provide the first unambiguous observation of multiple parton interactions, even with the existing data sample accumulated by the Tevatron collider experiments.Comment: 7 pages, plain LaTeX, 2 tables, no figures. A compressed PS file is available by anonymous ftp at ftp://phenom.physics.wisc.edu/pub/preprints/1996/madph-96-945.ps.

    Matching NLO parton shower matrix element with exact phase space: case of W -> l nu (gamma) and gamma^* -> pi^+pi^-(gamma)

    Full text link
    The PHOTOS Monte Carlo is often used for simulation of QED effects in decay of intermediate particles and resonances. Momenta are generated in such a way that samples of events cover the whole bremsstrahlung phase space. With the help of selection cuts, experimental acceptance can be then taken into account. The program is based on an exact multiphoton phase space. Crude matrix element is obtained by iteration of a universal multidimensional kernel. It ensures exact distribution in the soft photon region. Algorithm is compatible with exclusive exponentiation. To evaluate the program's precision, it is necessary to control the kernel with the help of perturbative results. If available, kernel is constructed from the exact first order matrix element. This ensures that all terms necessary for non-leading logarithms are taken into account. In the present paper we will focus on the W -> l nu and gamma^* -> pi^+ pi^- decays. The Born level cross sections for both processes approach zero in some points of the phase space. A process dependent compensating weight is constructed to incorporate the exact matrix element, but is recommended for use in tests only. In the hard photon region, where scalar QED is not expected to be reliable, the compensating weight for gamma^* decay can be large. With respect to the total rate, the effect remains at the permille level. It is nonetheless of interest. The terms leading to the effect are analogous to some terms appearing in QCD. The present paper can be understood either as a contribution to discussion on how to match two collinear emission chains resulting from charged sources in a way compatible with the exact and complete phase space, exclusive exponentiation and the first order matrix element of QED (scalar QED), or as the practical study of predictions for accelerator experiments.Comment: 24 page
    corecore