20 research outputs found

    Better antimicrobial resistance data analysis and reporting in less time

    Get PDF
    Objectives: Insights about local antimicrobial resistance (AMR) levels and epidemiology are essential to guide decision-making processes in antimicrobial use. However, dedicated tools for reliable and reproducible AMR data analysis and reporting are often lacking. We aimed to compare traditional data analysis and reporting versus a new approach for reliable and reproducible AMR data analysis in a clinical setting.Methods: Ten professionals who routinely work with AMR data were provided with blood culture test results including antimicrobial susceptibility results. Participants were asked to perform a detailed AMR data analysis in a two-round process: first using their software of choice and next using our newly developed software tool. Accuracy of the results and time spent were compared between both rounds. Finally, participants rated the usability using the System Usability Scale (SUS).Results: The mean time spent on creating the AMR report reduced from 93.7 to 22.4 min (P Conclusions: This study demonstrated the significant improvement in efficiency and accuracy in standard AMR data analysis and reporting workflows through open-source software. Integrating these tools in clinical settings can democratize the access to fast and reliable insights about local microbial epidemiology and associated AMR levels. Thereby, our approach can support evidence-based decision-making processes in the use of antimicrobials

    AMR - An R Package for Working with Antimicrobial Resistance Data

    Get PDF
    Antimicrobial resistance is an increasing threat to global health. Evidence for this trend is generated in microbiological laboratories through testing microorganisms for resistance against antimicrobial agents. International standards and guidelines are in place for this process as well as for reporting data on (inter-)national levels. However, there is a gap in the availability of standardized and reproducible tools for working with laboratory data to produce the required reports. It is known that extensive efforts in data cleaning and validation are required when working with data from laboratory information systems. Furthermore, the global spread and relevance of antimicrobial resistance demands to incorporate international reference data in the analysis process.In this paper, we introduce the AMR package for R that aims at closing this gap by providing tools to simplify antimicrobial resistance data cleaning and analysis, while incorporating international guidelines and scientifically reliable reference data. The AMR package enables standardized and reproducible antimicrobial resistance analyses, including the application of evidence-based rules, determination of first isolates, translation of various codes for microorganisms and antimicrobial agents, determination of (multi-drug) resistant microorganisms, and calculation of antimicrobial resistance, prevalence and future trends. The AMR package works independently of any laboratory information system and provides several functions to integrate into international workflows (e.g. WHONET software provided by the World Health Organization)

    Vancomycin-resistant enterococci (VRE) in hospital settings across European borders:a scoping review comparing the epidemiology in the Netherlands and Germany

    Get PDF
    The rising prevalence of vancomycin-resistant enterococci (VRE) is a matter of concern in hospital settings across Europe without a distinct geographical pattern. In this scoping review, we compared the epidemiology of vancomycin-resistant Enterococcus spp. in hospitals in the Netherlands and Germany, between 1991 and 2022. We searched PubMed and summarized the national antibiotic resistance surveillance data of the two countries. We included 46 studies and summarized national surveillance data from the NethMap in the Netherlands, the National Antimicrobial Resistance Surveillance database in Germany, and the EARS-Net data. In total, 12 studies were conducted in hospitals in the Netherlands, 32 were conducted in German hospitals, and an additional two studies were conducted in a cross-border setting. The most significant difference between the two countries was that studies in Germany showed an increasing trend in the prevalence of VRE in hospitals, and no such trend was observed in studies in the Netherlands. Furthermore, in both Dutch and German hospitals, it has been revealed that the molecular epidemiology of VREfm has shifted from a predominance of vanA towards vanB over the years. According to national surveillance reports, vancomycin resistance in Enterococcus faecium clinical isolates fluctuates below 1% in Dutch hospitals, whereas it follows an increasing trend in German hospitals (above 20%), as supported by individual studies. This review demonstrates that VRE is more frequently encountered in German than in Dutch hospitals and discusses the underlying factors for the difference in VRE occurrence in these two neighboring countries by comparing differences in healthcare systems, infection prevention control (IPC) guidelines, and antibiotic use in the Netherlands and Germany

    Trends in Occurrence and Phenotypic Resistance of Coagulase-Negative Staphylococci (CoNS) Found in Human Blood in the Northern Netherlands between 2013 and 2019

    Get PDF
    Background: For years, coagulase-negative staphylococci (CoNS) were not considered a cause of bloodstream infections (BSIs) and were often regarded as contamination. However, the association of CoNS with nosocomial infections is increasingly recognized. The identification of more than 40 different CoNS species has been driven by the introduction of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Yet, treatment guidelines consider CoNS as a whole group, despite increasing antibiotic resistance (ABR) in CoNS. This retrospective study provides an in-depth data analysis of CoNS isolates found in human blood culture isolates between 2013 and 2019 in the entire region of the Northern Netherlands. Methods: In total, 10,796 patients were included that were hospitalized in one of the 15 hospitals in the region, leading to 14,992 CoNS isolates for (ABR) data analysis. CoNS accounted for 27.6% of all available 71,632 blood culture isolates. EUCAST Expert rules were applied to correct for errors in antibiotic test results. Results: A total of 27 different CoNS species were found. Major differences were observed in occurrence and ABR profiles. The top five species covered 97.1% of all included isolates: S. epidermidis, S. hominis, S. capitis, S. haemolyticus, and S. warneri. Regarding ABR, methicillin resistance was most frequently detected in S. haemolyticus (72%), S. cohnii (65%), and S. epidermidis (62%). S. epidermidis and S. haemolyticus showed 50–80% resistance to teicoplanin and macrolides while resistance to these agents remained lower than 10% in most other CoNS species. Conclusion: These differences are often neglected in national guideline development, prompting a focus on ‘ABR-safe’ agents such as glycopeptides. In conclusion, this multi-year, full-region approach to extensively assess the trends in both the occurrence and phenotypic resistance of CoNS species could be used for evaluating treatment policies and understanding more about these important but still too often neglected pathogens

    Comparison of methods to identify and characterize Post-COVID syndrome using electronic health records and questionnaires

    Get PDF
    Background: Some of those infected with coronavirus suffer from post-COVID syndrome (PCS). However, an uniform definition of PCS is lacking, causing uncertainty about the prevalence and nature of this syndrome. We aim to improve understanding by operationalizing different definitions of PCS in different data sources and describing features and clinical subtypes.Methods: We use different methods and data sources. First, a cohort with electronic health records (EHR) from general practices (GPs) and GP out-of-hours-services combined with sociodemographic data for n≈1.000.000 individuals. Second, questionnaires among n=276 individuals who had been infected with coronavirus. Using both data sources, we operationalized definitions of PCS to calculate frequency and characteristics. In a subgroup of the EHR data we conducted community detection analyses to explore possible clinical subtypes of PCS.Results: The frequency of PCS ranged from 15-33%, depending on the method and data source. Across all methods and definitions, the mean age of individuals with PCS was around 53 years and they were more often female. There were small sex differences in the type of symptoms and overall symptoms were persistent for 6 months. Exploratory network analysis revealed three possible clinical subtypes.Discussion: We showed that frequency rates of post-COVID syndrome differ between methods and data sources, but characteristics of the affected individuals are quite stable. Overall, PCS is a heterogeneous syndrome affecting a significant group of individuals who need adequate care. Future studies should focus on care trajectories and qualitative measures such as experiences and quality of life of individuals living with PCS

    Changing epidemiology of meticillin-resistant Staphylococcus aureus in 42 hospitals in the Dutch-German border region, 2012 to 2016:results of the search-and-follow-policy

    Get PDF
    Introduction: Meticillin-resistant Staphylococcus aureus (MRSA) is a major cause of healthcare-associated infections. Aim: We describe MRSA colonisation/infection and bacteraemia rate trends in Dutch-German border region hospitals (NL-DE-BRH) in 2012-16. Methods: All 42 NL-DE BRH (8 NL-BRH, 34 DE-BRH) within the cross-border network EurSafety Health-net provided surveillance data (on average ca 620,000 annual hospital admissions, of these 68.0% in Germany). Guidelines defining risk for MRSA colonisation/infection were reviewed. MRSA-related parameters and healthcare utilisation indicators were derived. Medians over the study period were compared between NL- and DE-BRH. Results: Measures for MRSA cases were similar in both countries, however defining patients at risk for MRSA differed. The rate of nasopharyngeal MRSA screening swabs was 14 times higher in DE-BRH than in NL-BRH (42.3 vs 3.0/100 inpatients; p <0.0001). The MRSA incidence was over seven times higher in DE-BRH than in NL-BRH (1.04 vs 0.14/100 inpatients; p <0.0001). The nosocomial MRSA incidence-density was higher in DE-BRH than in NL-BRH (0.09 vs 0.03/1,000 patient days; p = 0.0002) and decreased significantly in DE-BRH (p = 0.0184) during the study. The rate of MRSA isolates from blood per 100,000 patient days was almost six times higher in DE-BRH than in NL-BRH (1.55 vs 0.26; p = 0.0041). The patients had longer hospital stays in DE-BRH than in NL-BRH (6.8 vs 4.9; p <0.0001). DE-BRH catchment area inhabitants appeared to be more frequently hospitalised than their Dutch counterparts. Conclusions: Ongoing IPC efforts allowed MRSA reduction in DE-BRH. Besides IPC, other local factors, including healthcare systems, could influence MRSA epidemiology

    Defining Multidrug Resistance of Gram-Negative Bacteria in the Dutch-German Border Region-Impact of National Guidelines

    Get PDF
    Preventing the spread of multidrug-resistant Gram-negative bacteria (MDRGNB) is a public health priority. However, the definition of MDRGNB applied for planning infection prevention measures such as barrier precautions differs depending on national guidelines. This is particularly relevant in the Dutch–German border region, where patients are transferred between healthcare facilities located in the two different countries, because clinicians and infection control personnel must understand antibiograms indicating MDRGNB from both sides of the border and using both national guidelines. This retrospective study aimed to compare antibiograms of Gram-negative bacteria and classify them using the Dutch and German national standards for MDRGNB definition. A total of 31,787 antibiograms from six Dutch and four German hospitals were classified. Overall, 73.7% were no MDRGNB according to both guidelines. According to the Dutch and German guideline, 7772/31,787 (24.5%) and 4586/31,787 (12.9%) were MDRGNB, respectively (p &lt; 0.0001). Major divergent classifications were observed for extended-spectrum β-lactamase (ESBL) -producing Enterobacteriaceae, non-carbapenemase-producing carbapenem-resistant Enterobacteriaceae, Pseudomonas aeruginosa and Stenotrophomonas maltophilia. The observed differences show that medical staff must carefully check previous diagnostic findings when patients are transferred across the Dutch–German border, as it cannot be assumed that MDRGNB requiring special hygiene precautions are marked in the transferred antibiograms in accordance with both national guidelines

    A prospective multicentre screening study on multidrug-resistant organisms in intensive care units in the Dutch-German cross-border region, 2017 to 2018:the importance of healthcare structures

    Get PDF
    BACKGROUND: Antimicrobial resistance poses a risk for healthcare, both in the community and hospitals. The spread of multidrug-resistant organisms (MDROs) occurs mostly on a local and regional level, following movement of patients, but also occurs across national borders. AIM: The aim of this observational study was to determine the prevalence of MDROs in a European cross-border region to understand differences and improve infection prevention based on real-time routine data and workflows. METHODS: Between September 2017 and June 2018, 23 hospitals in the Dutch (NL)–German (DE) cross-border region (BR) participated in the study. During 8 consecutive weeks, patients were screened upon admission to intensive care units (ICUs) for nasal carriage of meticillin-resistant Staphylococcus aureus (MRSA) and rectal carriage of vancomycin-resistant Enterococcus faecium/E. faecalis (VRE), third-generation cephalosporin-resistant Enterobacteriaceae (3GCRE) and carbapenem-resistant Enterobacteriaceae (CRE). All samples were processed in the associated laboratories. RESULTS: A total of 3,365 patients were screened (median age: 68 years (IQR: 57–77); male/female ratio: 59.7/40.3; NL-BR: n = 1,202; DE-BR: n = 2,163). Median screening compliance was 60.4% (NL-BR: 56.9%; DE-BR: 62.9%). MDRO prevalence was higher in DE-BR than in NL-BR, namely 1.7% vs 0.6% for MRSA (p = 0.006), 2.7% vs 0.1% for VRE (p < 0.001) and 6.6% vs 3.6% for 3GCRE (p < 0.001), whereas CRE prevalence was comparable (0.2% in DE-BR vs 0.0% in NL-BR ICUs). CONCLUSIONS: This first prospective multicentre screening study in a European cross-border region shows high heterogenicity in MDRO carriage prevalence in NL-BR and DE-BR ICUs. This indicates that the prevalence is probably influenced by the different healthcare structures

    Impact of reduced antibiotic treatment duration on antimicrobial resistance in critically ill patients in the randomized controlled SAPS-trial

    Get PDF
    BACKGROUND: In the previously reported SAPS trial (https://clinicaltrials.gov/ct2/show/NCT01139489), procalcitonin-guidance safely reduced the duration of antibiotic treatment in critically ill patients. We assessed the impact of shorter antibiotic treatment on antimicrobial resistance development in SAPS patients. MATERIALS AND METHODS: Cultures were assessed for the presence of multi-drug resistant (MDR) or highly resistant organisms (HRMO) and compared between PCT-guided and control patients. Baseline isolates from 30 days before to 5 days after randomization were compared with those from 5 to 30 days post-randomization. The primary endpoint was the incidence of new MDR/HRMO positive patients. RESULTS: In total, 8,113 cultures with 96,515 antibiotic test results were evaluated for 439 and 482 patients randomized to the PCT and control groups, respectively. Disease severity at admission was similar for both groups. Median (IQR) durations of the first course of antibiotics were 6 days (4-10) and 7 days (5-11), respectively ( p = 0.0001). Antibiotic-free days were 7 days (IQR 0-14) and 6 days (0-13; p = 0.05). Of all isolates assessed, 13% were MDR/HRMO positive and at baseline 186 (20%) patients were MDR/HMRO-positive. The incidence of new MDR/HRMO was 39 (8.9%) and 45 (9.3%) in PCT and control patients, respectively ( p = 0.82). The time courses for MDR/HRMO development were also similar for both groups ( p = 0.33). CONCLUSIONS: In the 921 randomized patients studied, the small but statistically significant reduction in antibiotic treatment in the PCT-group did not translate into a detectable change in antimicrobial resistance. Studies with larger differences in antibiotic treatment duration, larger study populations or populations with higher MDR/HRMO incidences might detect such differences
    corecore