2 research outputs found

    Multifunctional attributes of endophytic Pseudomonas strains isolated from the leaves of medicinal plants

    Get PDF
    Endophytic bacteria are responsible for improved plant growth due to its role in nitrogen fixation, indole acetic acid (IAA) production, phosphate solubilization etc and in plant protection through various mechanisms and production of bioactive compounds. The purpose of this study was to determine the plant growth promoting potential of endophytic bacteria isolated from medicinal plants namely, Adulsa, Amla, Bael, Kadamb, Mango, Neem, Tulsi. Endophytic bacteria isolated from the medicinal plants, comprised of 68% Gram positive and 29% Gram negative bacteria. Seventeen distinctly unique Gram-negative endophytes were selected for further analysis. The selected endophytes were tentatively identified as Pseudomonas sp. The multifarious endophytes were capable of nitrogen fixation, phosphate solubilisation, indole acetic acid (IAA) production, production of antimicrobial compounds and aromatic compound degradation. Some of the endophytic strains were found to harbor plasmids that may play a role in aromatic compound degradation. This study emphasizes the potential of endophytic Pseudomonas species in enhancing plant growth and plant protection

    Rhizobacteriome: Plant Growth - Promoting Traits and Its Functional Mechanism in Plant Growth, Development, and Defenses

    No full text
    The rhizomicrobiome comprises a wide variety of microorganisms that are essential for microbial colonization and root development in a wide variety of plants. A plant’s growth, development, and defense mechanisms would be impossible without the rhizomicrobiome’s microbes. In order to develop and operate properly, roots are essential to plants because they give structural support and aid in the intake of water and nutrients. This rhizobacteriome, a diverse bacterial population with particular roles that affect plant health, may be found in plant root exudates due to the complex variety of elements present. There are several metabolites produced by the plant-growth-promoting rhizobacteria (PGPR) in the rhizosphere near the plant roots that stimulate the plant’s development. Many PGPRs have the ability to solubilize phosphate, fix N2, produce biosynthesis of hydrolytic enzymes (hydrolase), produce phytohormones (phytoestrogens), produce siderophores (antibiotics), and more. Climate change, population growth, and the use of herbicides and insecticides have all had a significant influence on crop productivity in recent decades. Studies show that PGPR can boost plant growth and yield in a variety of species. As a result, PGPR dynamic microorganisms can be used as biofertilizers or biopesticides in agricultural techniques, which is critical to alleviating the urgent call for sustainable production. Rhizobacteriome, in particular PGPR found in the rhizosphere, and their many strategies for enhancing plant production are summarized in this chapter
    corecore