73 research outputs found

    Partial symmetry and existence of least energy solutions to some nonlinear elliptic equations on Riemannian models

    Get PDF
    We consider least energy solutions to the nonlinear equation −Δgu=f(r,u)-\Delta_g u=f(r,u) posed on a class of Riemannian models (M,g)(M,g) of dimension n≥2n\ge 2 which include the classical hyperbolic space Hn\mathbb H^n as well as manifolds with unbounded sectional geometry. Partial symmetry and existence of least energy solutions is proved for quite general nonlinearities f(r,u)f(r,u), where rr denotes the geodesic distance from the pole of MM

    Structural instability of nonlinear plates modelling suspension bridges: mathematical answers to some long-standing questions

    Full text link
    We model the roadway of a suspension bridge as a thin rectangular plate and we study in detail its oscillating modes. The plate is assumed to be hinged on its short edges and free on its long edges. Two different kinds of oscillating modes are found: longitudinal modes and torsional modes. Then we analyze a fourth order hyperbolic equation describing the dynamics of the bridge. In order to emphasize the structural behavior we consider an isolated equation with no forcing and damping. Due to the nonlinear behavior of the cables and hangers, a structural instability appears. With a finite dimensional approximation we prove that the system remains stable at low energies while numerical results show that for larger energies the system becomes unstable. We analyze the energy thresholds of instability and we show that the model allows to give answers to several questions left open by the Tacoma collapse in 1940.Comment: 33 page

    On the stability of a nonlinear nonhomogeneous multiply hinged beam

    Get PDF
    The paper deals with a nonlinear evolution equation describing the dynamics of a nonhomogeneous multiply hinged beam, subject to a nonlocal restoring force of displacement type. First, a spectral analysis for the associated weighted stationary problem is performed, providing a complete system of eigenfunctions. Then, a linear stability analysis for bimodal solutions of the evolution problem is carried out, with the final goal of suggesting optimal choices of the density and of the position of the internal hinged points in order to improve the stability of the beam. The analysis exploits both analytical and numerical methods; the main conclusion of the investigation is that nonhomogeneous density functions improve the stability of the structure

    ERP Modulation during Observation of Abstract Paintings by Franz Kline

    Get PDF
    The aim of this study was to test the involvement of sensorimotor cortical circuits during the beholding of the static consequences of hand gestures devoid of any meaning.In order to verify this hypothesis we performed an EEG experiment presenting to participants images of abstract works of art with marked traces of brushstrokes. The EEG data were analyzed by using Event Related Potentials (ERPs). We aimed to demonstrate a direct involvement of sensorimotor cortical circuits during the beholding of these selected works of abstract art. The stimuli consisted of three different abstract black and white paintings by Franz Kline. Results verified our experimental hypothesis showing the activation of premotor and motor cortical areas during stimuli observation. In addition, abstract works of art observation elicited the activation of reward-related orbitofrontal areas, and cognitive categorization-related prefrontal areas. The cortical sensorimotor activation is a fundamental neurophysiological demonstration of the direct involvement of the cortical motor system in perception of static meaningless images belonging to abstract art. These results support the role of embodied simulation of artist’s gestures in the perception of works of art

    The role of aerodynamic forces in a mathematical model for suspension bridges

    Full text link
    In a fish-bone model for suspension bridges studied by us in a previous paper we introduce linear aerodynamic forces. We numerically analyze the role of these forces and we theoretically show that they do not influence the onset of torsional oscillations. This suggests a new explanation for the origin of instability in suspension bridges: it is a combined interaction between structural nonlinearity and aerodynamics and it follows a precise pattern. This gives an answer to a long-standing question about the origin of torsional instability in suspension bridges

    Supercritical biharmonic equations with power-type nonlinearity

    Full text link
    The biharmonic supercritical equation Δ2u=∣u∣p−1u\Delta^2u=|u|^{p-1}u, where n>4n>4 and p>(n+4)/(n−4)p>(n+4)/(n-4), is studied in the whole space Rn\mathbb{R}^n as well as in a modified form with λ(1+u)p\lambda(1+u)^p as right-hand-side with an additional eigenvalue parameter λ>0\lambda>0 in the unit ball, in the latter case together with Dirichlet boundary conditions. As for entire regular radial solutions we prove oscillatory behaviour around the explicitly known radial {\it singular} solution, provided p∈((n+4)/(n−4),pc)p\in((n+4)/(n-4),p_c), where pc∈((n+4)/(n−4),∞]p_c\in ((n+4)/(n-4),\infty] is a further critical exponent, which was introduced in a recent work by Gazzola and the second author. The third author proved already that these oscillations do not occur in the complementing case, where p≥pcp\ge p_c. Concerning the Dirichlet problem we prove existence of at least one singular solution with corresponding eigenvalue parameter. Moreover, for the extremal solution in the bifurcation diagram for this nonlinear biharmonic eigenvalue problem, we prove smoothness as long as p∈((n+4)/(n−4),pc)p\in((n+4)/(n-4),p_c)

    Analyticity and criticality results for the eigenvalues of the biharmonic operator

    Full text link
    We consider the eigenvalues of the biharmonic operator subject to several homogeneous boundary conditions (Dirichlet, Neumann, Navier, Steklov). We show that simple eigenvalues and elementary symmetric functions of multiple eigenvalues are real analytic, and provide Hadamard-type formulas for the corresponding shape derivatives. After recalling the known results in shape optimization, we prove that balls are always critical domains under volume constraint.Comment: To appear on the proceedings of the conference "Geometric Properties for Parabolic and Elliptic PDE's - 4th Italian-Japanese Workshop" held in Palinuro (Italy), May 25-29, 201
    • …
    corecore