72 research outputs found

    An ultraviolet simulator for the incident Martian surface radiation and its applications

    Get PDF
    Ultraviolet (UV) radiation can act on putative organic/biological matter at the Martian surface in several ways. Only absorbed, but not transmitted or reflected, radiation energy can be photo-chemically effective. The most important biological UV effects are due to photochemical reactions in nucleic acids, DNA or RNA, which constitute the genetic material of all cellular organisms and viruses. Protein or lipid effects generally play a minor role, but they are also relevant in some cases. UV radiation can induce wavelengths-specific types of DNA damage. At the same time it can also induce the photo-reversion reaction of a UV induced DNA photoproduct of nucleic acid bases, the pyrimidine dimers. Intense UVB and UVC radiation, experienced on early Earth and present-day Mars, has been revealed to be harmful to all organisms, including extremophile bacteria and spores. Moreover, the formation of oxidants, catalytically produced in the Martian environment through UV irradiation, may be responsible for the destruction of organic matter on Mars. Following this, more laboratory simulations are vital in order to investigate and understand UV effects on organic matter in the case of Mars. We have designed a radiation apparatus that simulates the anticipated Martian UV surface spectrum between 200 and 400 nm (UVC-UVA). The system comprises a UV enhanced xenon arc lamp, special filter-sets and mirrors to simulate the effects of the Martian atmospheric column and dust loading. We describe the technical setup and performance of the system and discuss its uses for different applications. The design is focused on portability, therefore, the Mars-UV simulator represents a device for several different Mars simulation facilities with specific emphasis on Mars research topics

    Assessment of the Effects of Various UV Sources on Inactivation and Photoproduct Induction in Phage T7 Dosimeter

    No full text
    The correlation between the biologically effective dose (BED) of a phage T7 biological dosimeter and the induction of cyclobutane pyrimidine dimers (CPD) and (6-4) photoproducts ((6-4)PD) in the phage DNA was determined using seven various UV sources. The BED is the inactivation rate of phage T7 expressed in HT7 units. The CPD and (6-4)PD were determined by lesion-specific monoclonal antibodies in an immunodot-blot assay. The various lamps induced these lesions at different rates; the relative induction ratios of CPD to (6-4)PD increased with increasing effective wavelength of irradiation source. The amount of total adducts per phage was compared to the BED of phage T7 dosimeter, representing the average number of UV lesions in phage. For UVC (200-280 nm radiation) and unfiltered TL01 the number of total adducts approximates the reading; however, UV sources having longer effective wavelengths produced fewer CPD and (6-4)PD. A possible explanation is that although the most relevant lesions by UVC are the CPD and (6-4)PD, at longer wavelengths other photoproducts can contribute to the lethal damage of phages. The results emphasize the need to study the biological effects of solar radiation because the lesions responsible for the lethal effect may be different from those produced by various UV sources

    Influence of phage proteins on formation of specific UV DNA photoproducts in phage T7

    No full text
    Phage T7 can be used as a biological UV dosimeter. Its reading is proportional to the inactivation rate expressed in HT7 units. To understand the influence of phage proteins on the formation of DNA UV photoproducts, cyclobutane pyrimidine dimers (CPD) and (6-4)photoproducts ((6-4)PD) were determined in T7 DNA exposed to UV radiation under different conditions: intraphage T7 DNA, isolated T7 DNA and heated phage. To investigate the effects of various wavelengths, seven different UV sources have been used. The CPD and (6-4)PD were determined by lesion-specific antibodies in an immunodotblot assay. Both photoproducts were HT7 dose-dependently produced in all three objects by every irradiation source in the biologically relevant UV dose range (1-10 HT7). The CPD to (6-4)PD ratios increased with the increasing effective wavelength of the irradiation source and were similar in intraphage T7 DNA, isolated DNA and heated phage with all irradiation sources. However, a significant decrease in the yield of both photoproducts was detected in isolated T7 DNA and in heated phage compared to intraphage DNA, the decrease was dependent on the irradiation source. Both photoproducts were affected the same way in isolated T7 DNA and heated phage, respectively. The yield of CPD and (6-4)PD was similar in B, C-like and A conformational states of isolated T7 DNA, indicating that the conformational switch in the DNA is not the decisive factor in photoproduct formation. The most likely explanation for modulation of photoproduct frequency in intraphage T7 DNA is that the presence of bound phage proteins induces an alteration in DNA structure that can result in an increased rate of dimerization and (6-4)PD production of adjacent bases in intraphage T7 DNA
    • …
    corecore