55 research outputs found

    Executive Summary: Diagnosis and Management of Prosthetic Joint Infection: Clinical Practice Guidelines by the Infectious Diseases Society of Americaa

    Get PDF
    These guidelines are intended for use by infectious disease specialists, orthopedists, and other healthcare professionals who care for patients with prosthetic joint infection (PJI). They include evidence-based and opinion-based recommendations for the diagnosis and management of patients with PJI treated with debridement and retention of the prosthesis, resection arthroplasty with or without subsequent staged reimplantation, 1-stage reimplantation, and amputatio

    2015 Infectious Diseases Society of America (IDSA) Clinical Practice Guidelines for the Diagnosis and Treatment of Native Vertebral Osteomyelitis in Adultsa

    Get PDF
    These guidelines are intended for use by infectious disease specialists, orthopedic surgeons, neurosurgeons, radiologists, and other healthcare professionals who care for patients with native vertebral osteomyelitis (NVO). They include evidence and opinion-based recommendations for the diagnosis and management of patients with NVO treated with antimicrobial therapy, with or without surgical interventio

    Do quantitative levels of antispike-IgG antibodies aid in predicting protection from SARS-CoV-2 infection? Results from a longitudinal study in a police cohort.

    Get PDF
    In a COVID-19 sero-surveillance cohort study with predominantly healthy and vaccinated individuals, the objectives were (i) to investigate longitudinally the factors associated with the quantitative dynamics of antispike (anti-S1) IgG antibody levels, (ii) to evaluate whether the levels were associated with protection from SARS-CoV-2 infection, and (iii) to assess whether the association was different in the pre-Omicron compared with the Omicron period. The QuantiVac Euroimmun ELISA test was used to quantify anti-S1 IgG levels. The entire study period (16 months), the 11-month pre-Omicron period and the cross-sectional analysis before the Omicron surge included 3219, 2310, and 895 reactive serum samples from 949, 919, and 895 individuals, respectively. Mixed-effect linear, mixed-effect time-to-event, and logistic regression models were used to achieve the objectives. Age and time since infection or vaccination were the only factors associated with a decline of anti-S1 IgG levels. Higher antibody levels were significantly associated with protection from SARS-CoV-2 infection (0.89, 95% confidence interval [CI] 0.82-0.97), and the association was higher during the time period when Omicron was predominantly circulating compared with the ones when Alpha and Delta variants were predominant (adjusted hazard ratio for interaction 0.66, 95% CI 0.53-0.84). In a prediction model, it was estimated that >8000 BAU/mL anti-S1 IgG was required to reduce the risk of infection with Omicron variants by approximately 20%-30% for 90 days. Though, such high levels were only found in 1.9% of the samples before the Omicron surge, and they were not durable for 3 months. Anti-S1 IgG antibody levels are statistically associated with protection from SARS-CoV-2 infection. However, the prediction impact of the antibody level findings on infection protection is limited

    Serosurveillance after a COVID-19 Vaccine Campaign in a Swiss Police Cohort

    Get PDF
    Introduction: To assess the risk for COVID-19 of police officers, we are studying the seroprevalence in a cohort. The baseline cross-sectional investigation was performed prior to a vaccination campaign in January/February 2021, and demonstrated a seroprevalence of 12.9%. Here, we demonstrate serosurveillance results after a vaccination campaign. Methods: The cohort consists of 1022 study participants. The 3-month and 6-month follow-up visits were performed in April/May and September 2021. Data on infection and vaccination rates were obtained via measuring antibodies to the nucleocapsid protein and spike protein and online questionnaires. Results: The mean age of the population was 41 (SD 8.8) years, 72% were male and 76% had no comorbidity. Seroconversion was identified in 1.05% of the study population at the 3-month visit and in 0.73% at the 6-month visit, resulting in an infection rate of 1.8% over a time period of 6 months. In comparison, the infection rate in the general population over the same time period was higher (3.18%, P=0.018). At the 6-month visit, 77.8% of participants reported being vaccinated once and 70.5% twice; 81% had an anti-S antibody titer of >250 U/mL and 87.1% of ≥2 U/mL. No significant association between infection and job role within the department, working region, or years of experience in the job was found. Anti-spike antibody titers of vaccinated study participants showed a calculated decreasing trend 150 to 200 days after the second vaccine dose. Conclusion: These data confirm the value of the vaccination campaign in an exposed group other than healthcare professionals

    C-Reactive Protein, Erythrocyte Sedimentation Rate and Orthopedic Implant Infection

    Get PDF
    BACKGROUND: C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) have been shown to be useful for diagnosis of prosthetic hip and knee infection. Little information is available on CRP and ESR in patients undergoing revision or resection of shoulder arthroplasties or spine implants. METHODS/RESULTS: We analyzed preoperative CRP and ESR in 636 subjects who underwent knee (n=297), hip (n=221) or shoulder (n=64) arthroplasty, or spine implant (n=54) removal. A standardized definition of orthopedic implant-associated infection was applied. Receiver operating curve analysis was used to determine ideal cutoff values for differentiating infected from non-infected cases. ESR was significantly different in subjects with aseptic failure infection of knee (median 11 and 53.5 mm/h, respectively, p=<0.0001) and hip (median 11 and 30 mm/h, respectively, p=<0.0001) arthroplasties and spine implants (median 10 and 48.5 mm/h, respectively, p=0.0033), but not shoulder arthroplasties (median 10 and 9 mm/h, respectively, p=0.9883). Optimized ESR cutoffs for knee, hip and shoulder arthroplasties and spine implants were 19, 13, 26, and 45 mm/h, respectively. Using these cutoffs, sensitivity and specificity to detect infection were 89 and 74% for knee, 82 and 60% for hip, and 32 and 93% for shoulder arthroplasties, and 57 and 90% for spine implants. CRP was significantly different in subjects with aseptic failure and infection of knee (median 4 and 51 mg/l, respectively, p<0.0001), hip (median 3 and 18 mg/l, respectively, p<0.0001), and shoulder (median 3 and 10 mg/l, respectively, p=0.01) arthroplasties, and spine implants (median 3 and 20 mg/l, respectively, p=0.0011). Optimized CRP cutoffs for knee, hip, and shoulder arthroplasties, and spine implants were 14.5, 10.3, 7, and 4.6 mg/l, respectively. Using these cutoffs, sensitivity and specificity to detect infection were 79 and 88% for knee, 74 and 79% for hip, and 63 and 73% for shoulder arthroplasties, and 79 and 68% for spine implants. CONCLUSION: CRP and ESR have poor sensitivity for the diagnosis of shoulder implant infection. A CRP of 4.6 mg/l had a sensitivity of 79 and a specificity of 68% to detect infection of spine implants

    Diffuse skin hyperpigmentation associated with chronic minocycline use in a patient with prosthetic joint infection

    No full text
    Cutaneous hyperpigmentation is a recognized adverse effect of chronic minocycline use occurring in up to 50% of patients. In this report we present a rare case of extensive skin hyperpigmentation involving both lower extremities in a patient receiving long term minocycline. The patient was receiving minocycline as suppression for chronic prosthetic joint infection. Risk factors associated with minocycline-induced cutaneous pigmentation (MICH) will be reviewed
    • …
    corecore