1,826 research outputs found

    The role of non-uniqueness in the development of vortex breakdown in tubes

    Get PDF
    Numerical solutions of viscous, swirling flows through circular pipes of constant radius and circular pipes with throats have been obtained. Solutions were computed for several values of vortex circulation, Reynolds number and throat/inlet area ratio, under the assumptions of steady flow, rotational symmetry and frictionless flow at the pipe wall. When the Reynolds number is sufficiently large, vortex breakdown occurs abruptly with increased circulation as a result of the existence of non-unique solutions. Solution paths for Reynolds numbers exceeding approximately 1000 are characterized by an ensemble of three inviscid flow types: columnar (for pipes of constant radius), soliton and wavetrain. Flows that are quasi-cylindrical and which do not exhibit vortex breakdown exist below a critical circulation, dependent on the Reynolds number and the throat/inlet area ratio. Wavetrain solutions are observed over a small range of circulation below the critical circulation, while above the critical value, wave solutions with large regions of reversed flow are found that are primarily solitary in nature. The quasi-cylindrical (QC) equations first fail near the critical value, in support of Hall's theory of vortex breakdown (1967). However, the QC equations are not found to be effective in predicting the spatial position of the breakdown structure

    Effective Dielectric Tensor for Electromagnetic Wave Propagation in Random Media

    Full text link
    We derive exact strong-contrast expansions for the effective dielectric tensor \epeff of electromagnetic waves propagating in a two-phase composite random medium with isotropic components explicitly in terms of certain integrals over the nn-point correlation functions of the medium. Our focus is the long-wavelength regime, i.e., when the wavelength is much larger than the scale of inhomogeneities in the medium. Lower-order truncations of these expansions lead to approximations for the effective dielectric constant that depend upon whether the medium is below or above the percolation threshold. In particular, we apply two- and three-point approximations for \epeff to a variety of different three-dimensional model microstructures, including dispersions of hard spheres, hard oriented spheroids and fully penetrable spheres as well as Debye random media, the random checkerboard, and power-law-correlated materials. We demonstrate the importance of employing nn-point correlation functions of order higher than two for high dielectric-phase-contrast ratio. We show that disorder in the microstructure results in an imaginary component of the effective dielectric tensor that is directly related to the {\it coarseness} of the composite, i.e., local volume-fraction fluctuations for infinitely large windows. The source of this imaginary component is the attenuation of the coherent homogenized wave due to scattering. We also remark on whether there is such attenuation in the case of a two-phase medium with a quasiperiodic structure.Comment: 40 pages, 13 figure

    Multifidelity Monte Carlo estimation for large-scale uncertainty propagation

    Get PDF
    One important task of uncertainty quantification is propagating input uncertainties through a system of interest to quantify the uncertainties’ effects on the system outputs; however, numerical methods for uncertainty propagation are often based on Monte Carlo estimation, which can require large numbers of numerical simulations of the numerical model describing the system response to obtain estimates with acceptable accuracies. Thus, if the model is computationally expensive to evaluate, then Monte-Carlo-based uncertainty propagation methods can quickly become computationally intractable. We demonstrate that multifidelity methods can significantly speedup uncertainty propagation by leveraging low-cost low-fidelity models and establish accuracy guarantees by using occasional recourse to the expensive high-fidelity model. We focus on the multifidelity Monte Carlo method, which is a multifidelity approach that optimally distributes work among the models such that the mean-squared error of the multifidelity estimator is minimized for a given computational budget. The multifidelity Monte Carlo method is applicable to general types of low-fidelity models, including projection-based reduced models, data-fit surrogates, response surfaces, and simplified-physics models. We apply the multifidelity Monte Carlo method to a coupled aero-structural analysis of a wing and a flutter problem with a high-aspect-ratio wing. The low-fidelity models are data-fit surrogate models derived with standard procedures that are built in common software environments such as Matlab and numpy/scipy. Our results demonstrate speedups of orders of magnitude compared to using the high-fidelity model alone.United States. Air Force. Office of Scientific Research. Multidisciplinary University Research Initiative (Award FA9550-15-1-0038

    Fatty Acid Methyl Esters as Biosolvents of Epoxy Resins: A Physicochemical Study

    Get PDF
    The C8 to C18 fatty acid methyl esters (FAME) have been compared as solvents for two epoxy resin pre-polymers, bisphenol A diglycidyl ether (DGEBA) and triglycidyl paminophenol ether (TGPA). It was found that the solubilization limits vary according to the ester and that methyl caprylate is the best solvent of both resins. To explain these solubility performances, physical and chemical properties of FAME were studied, such as the Hansen parameters, viscosity, binary diffusion coefficient and vaporization enthalpy. Determination of the physicochemical parameters of FAME was carried out by laboratory experimentations and by calculation from bibliographic data. The Hansen parameters of FAME and epoxy resins pre-polymers were theoretically and experimentally determined. The FAME chain length showed a long dependence on the binary diffusion parameters and kinematic viscosity, which are mass and momentum transport properties. Moreover, the vaporization enthalpy of these compounds was directly correlated with the solubilization limits

    Least Squares and Shrinkage Estimation under Bimonotonicity Constraints

    Get PDF
    In this paper we describe active set type algorithms for minimization of a smooth function under general order constraints, an important case being functions on the set of bimonotone r-by-s matrices. These algorithms can be used, for instance, to estimate a bimonotone regression function via least squares or (a smooth approximation of) least absolute deviations. Another application is shrinkage estimation in image denoising or, more generally, regression problems with two ordinal factors after representing the data in a suitable basis which is indexed by pairs (i,j) in {1,...,r}x{1,...,s}. Various numerical examples illustrate our methods

    Identification and evolution of glucosinolate sulfatases in a specialist flea beetle

    Get PDF

    Broad-Scale Redistribution of mRNA Abundance and Transcriptional Machinery in Response to Growth Rate in Salmonella Enterica Serovar Typhimurium

    Get PDF
    We have investigated the connection between the four-dimensional architecture of the bacterial nucleoid and the organism\u27s global gene expression programme. By localizing the transcription machinery and the transcriptional outputs across the genome of the model bacterium Salmonella enterica serovar Typhimurium at different stages of the growth cycle, a surprising disconnection between gene dosage and transcriptional output was revealed. During exponential growth, gene output occurred chiefly in the Ori (origin), Ter (terminus) and NSL (non-structured left) domains, whereas the Left macrodomain remained transcriptionally quiescent at all stages of growth. The apparently high transcriptional output in Ter was correlated with an enhanced stability of the RNA expressed there during exponential growth, suggesting that longer mRNA half-lives compensate for low gene dosage. During exponential growth, RNA polymerase (RNAP) was detected everywhere, whereas in stationary phase cells, RNAP was concentrated in the Ter macrodomain. The alternative sigma factors RpoE, RpoH and RpoN were not required to drive transcription in these growth conditions, consistent with their observed binding to regions away from RNAP and regions of active transcription. Specifically, these alternative sigma factors were found in the Ter macrodomain during exponential growth, whereas they were localized at the Ori macrodomain in stationary phase
    • 

    corecore