18 research outputs found

    High fidelity sorting of remarkably similar components via metal-mediated assembly.

    Get PDF
    Subtle differences in ligand coordination angle and rigidity lead to high fidelity sorting between individual components displaying identical coordination motifs upon metal-mediated self-assembly. Narcissistic self-sorting can be achieved between highly similar ligands that vary minimally in rigidity and internal coordination angle upon combination with Fe(ii) ions and 2-formylpyridine. Selective, sequential cage formation can be precisely controlled in a single flask from a mix of three different core ligands (and 33 total components) differing only in the hybridization of one group that is uninvolved in the metal coordination process

    Modeling Polymorphic Molecular Crystals with Electronic Structure Theory.

    No full text
    Interest in molecular crystals has grown thanks to their relevance to pharmaceuticals, organic semiconductor materials, foods, and many other applications. Electronic structure methods have become an increasingly important tool for modeling molecular crystals and polymorphism. This article reviews electronic structure techniques used to model molecular crystals, including periodic density functional theory, periodic second-order Møller-Plesset perturbation theory, fragment-based electronic structure methods, and diffusion Monte Carlo. It also discusses the use of these models for predicting a variety of crystal properties that are relevant to the study of polymorphism, including lattice energies, structures, crystal structure prediction, polymorphism, phase diagrams, vibrational spectroscopies, and nuclear magnetic resonance spectroscopy. Finally, tools for analyzing crystal structures and intermolecular interactions are briefly discussed

    How many more polymorphs of ROY remain undiscovered

    No full text

    Achieving High-Accuracy Intermolecular Interactions by Combining Coulomb-Attenuated Second-Order Møller-Plesset Perturbation Theory with Coupled Kohn-Sham Dispersion.

    No full text
    The dispersion-corrected second-order Møller-Plesset perturbation theory (MP2C) approach accurately describes intermolecular interactions in many systems. MP2C, however, expends much computational effort to compute the long-range correlation with MP2, only to discard and replace those contributions with a simpler long-range dispersion correction based on intermolecular perturbation theory. Here, we demonstrate that one can avoid calculating the long-range MP2 correlation by attenuating the Coulomb operator, allowing the dispersion correction to handle the long-range interactions inexpensively. With relatively modest Coulomb attenuation, one obtains results that are very similar to those from conventional MP2C. With more aggressive attenuation, one can remove just enough short-range repulsive exchange-dispersion interactions to compensate for finite basis set errors. Doing so makes it possible to approach complete basis set limit quality results with only an aug-cc-pVTZ basis, resulting in substantial computational savings. Further computational savings could be achieved by reformulating the MP2C algorithm to exploit the increased sparsity of the two-electron integrals
    corecore