15 research outputs found

    PREVENTIVE EFFECT OF CYCAS REVOLUTA IN 1,2-DIMETHYLHYDRAZINE-INDUCED COLON CANCER IN WISTAR RAT MODEL

    Get PDF
     Objective: The aim of this study was to evaluate the colon cancer protective activity of Cycas revoluta (Cycadaceae).Methods: Methanolic extracts of C. revoluta (MECR) were assessed for total polyphenols and total flavonoids content. For the in vivo study, animals were divided into five groups (n=6). Group I serves as control which received 0.25% carboxymethyl cellulose solution. Groups II-V were treated with 1,2-dimethylhydrazine (DMH) which was given at the dose of 20 mg/kg b.w., s.c. once a week for 4 consecutive weeks. Aqueous suspension of MECR at a dose of 200 mg/kg/day and 400 mg/kg was administered orally to the animals in Groups III-IV every day for 16 weeks. Group V received 5-fluorouracil (5-FU) as a standard drug at a dose of 10 mg/kg b.w., per day s.c. for 16 weeks. After that, animals are sacrificed and colons are taken separately to evaluate biochemical parameters and morphological and histopathological changes.Results: MECR contains total polyphenols (6.3±0.09 mg of gallic acid equivalent /g) and total flavonoids (4.6±0.06 mg of rutin equivalent/g). The in vivo study revealed that superoxide dismutase (SOD), catalase, and reduced glutathione (GSH) activity were decreased in DMH Group. All these parameters were restored significantly (p<0.05) toward the near normal value on supplementation with MECR (200 and 400 mg/kg b.w.) to DMH-treated rats (Groups III and IV). In Group V, the synthetic standard drug 5-FU (10 mg/kg b.w.) also increases the activities of SOD, CAT, and GSH significantly (p<0.05) more in DMH-treated rats.Conclusions: It can be concluded that MECR protects rat from DMH-induced colon cancer

    Centrosymmetric-noncentrosymmetric Structural Phase Transition in Quasi one-dimensional compound, (TaSe4_4)3_3I

    Full text link
    (TaSe4_4)3_3I, a compound belonging to the family of quasi-one-dimensional transition-metal tetrachalcogenides, has drawn significant attention due to a recent report on possible coexistence of two antagonistic phenomena, superconductivity and magnetism below 2.5~K (Bera et. al, arXiv:2111.14525). Here, we report a structural phase transition of the trimerized phase at temperature, T ≃T~\simeq~145~K using Raman scattering, specific heat, and electrical transport measurements. The temperature-dependent single-crystal X-ray diffraction experiments establish the phase transition from a high-temperature centrosymmetric to a low-temperature non-centrosymmetric structure, belonging to the same tetragonal crystal family. The first-principle calculation finds the aforementioned inversion symmetry-breaking structural transition to be driven by the hybridization energy gain due to the off-centric movement of the Ta atoms, which wins over the elastic energy loss.Comment: 11 pages, 5 figures, Under review as a regular articl

    Enhanced coercivity and emergence of spin cluster glass state in 2D ferromagnetic material Fe3GeTe2

    Full text link
    Two-dimensional (2D) van der Waals (vdW) magnetic materials with high coercivity and high TCT_\text{C} are desired for spintronics and memory storage applications. Fe3_3GeTe2_2 (F3GT) is one such 2D vdW ferromagnet with a reasonably high TCT_\text{C}, but with a very low coercive field, HcH_\text{c} (≲\lesssim100~Oe). Some of the common techniques of enhancing HcH_\text{c} are by introducing pinning centers, defects, stress, doping, etc. They involve the risk of undesirable alteration of other important magnetic properties. Here we propose a very easy, robust, and highly effective method of phase engineering by altering the sample growth conditions to greatly enhance the intrinsic coercivity (7-10 times) of the sample, without compromising its fundamental magnetic properties (TC≃T_\text{C}\simeq210K). The phase-engineered sample (F3GT-2) comprises of parent F3GT phase with a small percentage of randomly embedded clusters of a coplanar FeTe (FT) phase. The FT phase serves as both mosaic pinning centers between grains of F3GT above its antiferromagnetic transition temperature (TC1∼T_\text{C1}\sim70~K) and also as anti-phase domains below TC1T_\text{C1}. As a result, the grain boundary disorder and metastable nature are greatly augmented, leading to highly enhanced coercivity, cluster spin glass, and meta-magnetic behavior. The enhanced coercivity (≃\simeq1~kOe) makes F3GT-2 much more useful for memory storage applications and is likely to elucidate a new route to tune useful magnetic properties. Moreover, this method is much more convenient than hetero-structure and other cumbersome techniques.Comment: 12 pages, 11 figure

    Raman signatures of lattice dynamics across inversion symmetry breaking phase transition in quasi-1D compound, (TaSe4_4)3_3I

    Full text link
    Structural phase transition can occur due to complex mechanisms other than simple dynamical instability, especially when the parent and daughter structure is of low dimension. This article reports such an inversion symmetry-breaking structural phase transition in a quasi-1D compound (TaSe4_4)3_3I at TS∼_S\sim 141~K studied by Raman spectroscopy. Our investigation of collective lattice dynamics reveals three additional Raman active modes in the low-temperature non-centrosymmetric structure. Two vibrational modes become Raman active due to the absence of an inversion center, while the third mode is a soft phonon mode resulting from the vibration of Ta atoms along the \{-Ta-Ta-\} chains. Furthermore, the most intense Raman mode display Fano-shaped asymmetry, inferred as the signature of strong electron-phonon coupling. The group theory and symmetry analysis of Raman spectra confirm the displacive-first-order nature of the structural transition. Therefore, our results establish (TaSe4)3_4)_3I as a model system with broken inversion symmetry and strong electron-phonon coupling in the quasi-1D regime.Comment: Main text - 6 figures, 11 pages, supplementary - 10 figures, 13 page

    Design and Synthesis of Fluorescent Carbon Dot Polymer and Deciphering Its Electronic Structure

    Get PDF
    Herein we report the one-pot synthesis of a fluorescent polymer-like material (pCD) by exploiting ruthenium-doped carbon dots (CDs) as building blocks. The unusual spectral profiles of pCDswith double-humped periodic excitation dependent photoluminescence (EDPL), and the regular changes in their corresponding average lifetime indicate the formation of high energy donor states and low energy aggregated states due to the overlap of molecular orbitals throughout the chemically switchable π-network of CDs on polymerization. To probe the electronic distribution of pCDs, we have investigated the occurrence of photoinduced electron transfer with a model electron acceptor, menadione using transient absorption technique, corroborated with low magnetic field, followed by identification of the transient radical ions generated through electron transfer. The experimentally obtained B_(1/2) value, a measure of the hyperfine interactions present in the system, indicates the presence of highly conjugated π-electron cloud in pCDs. The mechanism of formation of pCDs and the entire experimental findings have further been investigated through molecular modeling and computational modeling. The DFT calculations demonstrated probable electronic transitions from the surface moieties of pCDs to the tethered ligands

    Design and Synthesis of Fluorescent Carbon Dot Polymer and Deciphering Its Electronic Structure

    Get PDF
    Herein we report the one-pot synthesis of a fluorescent polymer-like material (pCD) by exploiting ruthenium-doped carbon dots (CDs) as building blocks. The unusual spectral profiles of pCDswith double-humped periodic excitation dependent photoluminescence (EDPL), and the regular changes in their corresponding average lifetime indicate the formation of high energy donor states and low energy aggregated states due to the overlap of molecular orbitals throughout the chemically switchable π-network of CDs on polymerization. To probe the electronic distribution of pCDs, we have investigated the occurrence of photoinduced electron transfer with a model electron acceptor, menadione using transient absorption technique, corroborated with low magnetic field, followed by identification of the transient radical ions generated through electron transfer. The experimentally obtained B_(1/2) value, a measure of the hyperfine interactions present in the system, indicates the presence of highly conjugated π-electron cloud in pCDs. The mechanism of formation of pCDs and the entire experimental findings have further been investigated through molecular modeling and computational modeling. The DFT calculations demonstrated probable electronic transitions from the surface moieties of pCDs to the tethered ligands

    Review of recent progress on THz spectroscopy of quantum materials: superconductors, magnetic and topological materials

    No full text
    Recently, the THz spectroscopy has been efficiently used to investigate varieties of quantum materials, including superconductors, novel magnetic, and topological materials. These materials often exhibit strong correlation and competing interactions between various degrees of freedom, including charge, spins, orbital, and lattice dynamics, which lead to many exotic phenomena and novel phase transitions whose cause–effect correlations are challenging to determine. Whereas probing the ground state’s excitations can unravel the underlying mechanism of these complex phenomena. The characteristic energy scales of different elementary excitations and collective modes in many of these materials are in the THz frequency range. Therefore, THz spectroscopy has become a very effective probe and directly revealed many exciting physics. Many novel phenomena, including exotic quasiparticle excitations in magnetic systems, topological magneto-electric effect, and topological quantum phase transition in three-dimensional topological insulators, are studied with unprecedented success. Here, we review some recent research reports on many-body quantum materials, including superconductors, novel magnetic, and topological materials probed by few popular THz-spectroscopy techniques. We will also briefly discuss the prospects of using THz spectroscopy for observing some exotic quantum phenomena that are still elusive or under investigation

    Ultrafast Carrier Dynamics of Photo-Induced Cu-Doped CdSe Nanocrystals

    No full text
    The understanding of ultrafast carrier relaxation process in doped semiconductor quantum dots (QDs) is very important for their potential applications in light-emitting diodes, optoelectronics. Here, we have studied the change in electronic properties of Cu-doped CdSe QDs upon light illumination. The light-induced effect leads to the enhancement of the band edge decay time and reduces the decay time of the dopant emission due to photocorrosion of Cu-doped CdSe QDs. The bleaching recovery kinetics and the hot electron cooling dynamics have been studied by using femtosecond transient absorption spectroscopy. It is observed that the electron cooling process of doped CdSe QDs is dependent on the dopant concentration and the cooling kinetics of doped CdSe QDs are found to be slower than undoped QDs. After light irradiation, the cooling processes of hot electron and recovery process in doped systems are modified

    Characterization of enhanced antibacterial effects of novel silver nanoparticles

    No full text
    In the present study, we report the preparation of silver nanoparticles in the range of 10–15 nm with increased stability and enhanced anti-bacterial potency. The morphology of the nanoparticles was characterized by transmission electron microscopy. The antibacterial effect of silver nanoparticles used in this study was found to be far more potent than that described in the earlier reports. This effect was dose dependent and was more pronounced against gram-negative bacteria than gram-positive organisms. Although bacterial cell lysis could be one of the reasons for the observed antibacterial property, nanoparticles also modulated the phosphotyrosine profile of putative bacterial peptides, which could thus affect bacterial signal transduction and inhibit the growth of the organisms
    corecore