28 research outputs found

    The Common Swift Louse Fly, Crataerina pallida: An Ideal Species for Studying Host-Parasite Interactions

    Get PDF
    Little is known of the life-history of many parasitic species. This hinders a full understanding of host-parasitic interactions. The common swift louse fly, Crataerina pallida Latreille (Diptera: Hippoboscidae), an obligate haematophagous parasite of the Common Swift, Apus apus Linnaeus 1758, is one such species. No detrimental effect of its parasitism upon the host has been found. This may be because too little is known about C. pallida ecology, and therefore detrimental effects are also unknown. This is a review of what is known about the life-history of this parasite, with the aim of promoting understanding of its ecology. New, previously unreported observations about C. pallida made from personal observations at a nesting swift colony are described. Unanswered questions are highlighted, which may aid understanding of this host-parasite system. C. pallida may prove a suitable model species for the study of other host-parasite relationships

    Vetufebrus ovatus n. gen., n. sp. (Haemospororida: Plasmodiidae) vectored by a streblid bat fly (Diptera: Streblidae) in Dominican amber

    Get PDF
    This is the publisher’s final pdf. The published article is copyrighted by BioMed Central Ltd. and can be found at: http://www.parasitesandvectors.com/.Background: Both sexes of bat flies in the families Nycteribiidae and Streblidae (Diptera: Hippoboscoidea) reside in\ud the hair or on the wing membranes of bats and feed on blood. Members of the Nycteribiidae transmit bat malaria\ud globally however extant streblids have never been implemented as vectors of bat malaria. The present study\ud shows that during the Tertiary, streblids also were vectors of bat malaria.\ud Results: A new haemospororidan, Vetufebrus ovatus, n. gen., n. sp., (Haemospororida: Plasmodiidae) is described\ud from two oocysts attached to the midgut wall and sporozoites in salivary glands and ducts of a fossil bat fly\ud (Diptera: Streblidae) in Dominican amber. The new genus is characterized by ovoid oocysts, short, stubby\ud sporozoites with rounded ends and its occurrence in a fossil streblid. This is the first haemosporidian reported from\ud a streblid bat fly and shows that representatives of the Hippoboscoidea were vectoring bat malaria in the New\ud World by the mid-Tertiary.\ud Conclusions: This report is the first evidence of an extant or extinct streblid bat fly transmitting malaria.\ud Discovering a mid-tertiary malarial parasite in a fossil streblid that closely resembles members of a malarial genus\ud found in nycteribiid bat flies today shows how little we know about the vector associations of streblids. While no\ud malaria parasites have been found in extant streblids, they probably occur and it is possible that streblids were the\ud earliest lineage of flies that transmitted bat malaria to Chiroptera

    Coquillettidia (Culicidae, Diptera) mosquitoes are natural vectors of avian malaria in Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mosquito vectors of <it>Plasmodium </it>spp. have largely been overlooked in studies of ecology and evolution of avian malaria and other vertebrates in wildlife.</p> <p>Methods</p> <p><it>Plasmodium </it>DNA from wild-caught <it>Coquillettidia </it>spp. collected from lowland forests in Cameroon was isolated and sequenced using nested PCR. Female <it>Coquillettidia aurites </it>were also dissected and salivary glands were isolated and microscopically examined for the presence of sporozoites.</p> <p>Results</p> <p>In total, 33% (85/256) of mosquito pools tested positive for avian <it>Plasmodium </it>spp., harbouring at least eight distinct parasite lineages. Sporozoites of <it>Plasmodium </it>spp. were recorded in salivary glands of <it>C. aurites </it>supporting the PCR data that the parasites complete development in these mosquitoes. Results suggest <it>C. aurites</it>, <it>Coquillettidia pseudoconopas </it>and <it>Coquillettidia metallica </it>as new and important vectors of avian malaria in Africa. All parasite lineages recovered clustered with parasites formerly identified from several bird species and suggest the vectors capability of infecting birds from different families.</p> <p>Conclusion</p> <p>Identifying the major vectors of avian <it>Plasmodium </it>spp. will assist in understanding the epizootiology of avian malaria, including differences in this disease distribution between pristine and disturbed landscapes.</p

    Stilbometopa podopostyla

    No full text
    corecore