41 research outputs found

    Optimization of the doxycycline-dependent simian immunodeficiency virus through in vitro evolution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vaccination of macaques with live attenuated simian immunodeficiency virus (SIV) provides significant protection against the wild-type virus. The use of a live attenuated human immunodeficiency virus (HIV) as AIDS vaccine in humans is however considered unsafe because of the risk that the attenuated virus may accumulate genetic changes during persistence and evolve to a pathogenic variant. We earlier presented a conditionally live HIV-1 variant that replicates exclusively in the presence of doxycycline (dox). Replication of this vaccine strain can be limited to the time that is needed to provide full protection through transient dox administration. Since the effectiveness and safety of such a conditionally live virus vaccine should be tested in macaques, we constructed a similar dox-dependent SIV variant. The Tat-TAR transcription control mechanism in this virus was inactivated through mutation and functionally replaced by the dox-inducible Tet-On regulatory system. This SIV-rtTA variant replicated in a dox-dependent manner in T cell lines, but not as efficiently as the parental SIVmac239 strain. Since macaque studies will likely require an efficiently replicating variant, we set out to optimize SIV-rtTA through in vitro viral evolution.</p> <p>Results</p> <p>Upon long-term culturing of SIV-rtTA, additional nucleotide substitutions were observed in TAR that affect the structure of this RNA element but that do not restore Tat binding. We demonstrate that the bulge and loop mutations that we had introduced in the TAR element of SIV-rtTA to inactivate the Tat-TAR mechanism, shifted the equilibrium between two alternative conformations of TAR. The additional TAR mutations observed in the evolved variants partially or completely restored this equilibrium, which suggests that the balance between the two TAR conformations is important for efficient viral replication. Moreover, SIV-rtTA acquired mutations in the U3 promoter region. We demonstrate that these TAR and U3 changes improve viral replication in T-cell lines and macaque peripheral blood mononuclear cells (PBMC) but do not affect dox-control.</p> <p>Conclusion</p> <p>The dox-dependent SIV-rtTA variant was optimized by viral evolution, yielding variants that can be used to test the conditionally live virus vaccine approach and as a tool in SIV biology studies and vaccine research.</p

    Role of Occult and Post-acute Phase Replication in Protective Immunity Induced with a Novel Live Attenuated SIV Vaccine

    Get PDF
    In order to evaluate the role of persisting virus replication during occult phase immunisation in the live attenuated SIV vaccine model, a novel SIVmac239Δnef variant (SIVrtTA) genetically engineered to replicate in the presence of doxycycline was evaluated for its ability to protect against wild-type SIVmac239. Indian rhesus macaques were vaccinated either with SIVrtTA or with SIVmac239Δnef. Doxycycline was withdrawn from 4 of 8 SIVrtTA vaccinates before challenge with wild-type virus. Unvaccinated challenge controls exhibited ~107 peak plasma viral RNA copies/ml persisting beyond the acute phase. Six vaccinates, four SIVmac239Δnef and two SIVrtTA vaccinates exhibited complete protection, defined by lack of wild-type viraemia post-challenge and virus-specific PCR analysis of tissues recovered post-mortem, whereas six SIVrtTA vaccinates were protected from high levels of viraemia. Critically, the complete protection in two SIVrtTA vaccinates was associated with enhanced SIVrtTA replication in the immediate post-acute vaccination period but was independent of doxycycline status at the time of challenge. Mutations were identified in the LTR promoter region and rtTA gene that do not affect doxycycline-control but were associated with enhanced post-acute phase replication in protected vaccinates. High frequencies of total circulating CD8+T effector memory cells and a higher total frequency of SIV-specific CD8+ mono and polyfunctional T cells on the day of wild-type challenge were associated with complete protection but these parameters were not predictive of outcome when assessed 130 days after challenge. Moreover, challenge virus-specific Nef CD8+ polyfunctional T cell responses and antigen were detected in tissues post mortem in completely-protected macaques indicating post-challenge control of infection. Within the parameters of the study design, on-going occult-phase replication may not be absolutely required for protective immunity

    Revertants and pseudo-revertants of human immunodeficiency virus type 1 viruses mutated in the long terminal repeat promoter region

    No full text
    The TAR domain is an RNA secondary structure element within the leader transcript of the human immunodeficiency virus type 1 (HIV-1) virus. TAR RNA forms the binding site for the viral trans-activator protein Tat and cellular co-factors that are involved in induction of the LTR transcriptional promoter. Here, we report that mutations in the single-stranded bulgeand loop-domains of TAR RNA impair the ability of the virus to replicate in T cell lines. Revertant viruses were isolated upon prolonged culturing and analysed through sequencing. The reversion data confirm the importance of both bulge and loop as sequence-specific recognition motifs. We also analysed the replication phenotype of a mutant HIV-1 virus with a substitution in the-19/-3 promoter region. This mutant displayed delayed infection kinetics compared to the wild-type virus, and revertants with increased replication potential could be isolated. Interestingly, all revertants had acquired an additional mutation at position-2. Primer extension analyses revealed that an upstream shift in transcription start site usage was induced by the- 19/- 3 substitution. This effect was compensated for by the nucleotide substitution near the RNA start site

    A Hairpin Structure in the R Region of the Human Immunodeficiency Virus Type 1 RNA Genome Is Instrumental in Polyadenylation Site Selection

    No full text
    Some retroviruses with an extended repeat (R) region encode the polyadenylation signal within the R region such that this signal is present at both the 5′ and 3′ ends of the viral transcript. This necessitates differential regulation to either repress recognition of the 5′ polyadenylation signal or enhance usage of the 3′ signal. The human immunodeficiency virus type 1 (HIV-1) genome encodes an inherently efficient polyadenylation signal within the 97-nucleotide R region. Polyadenylation at the 5′ HIV-1 polyadenylation site is inhibited by downstream splicing signals, and usage of the 3′ polyadenylation site is triggered by an upstream enhancer element. In this paper, we demonstrate that this on-off switch of the HIV-1 polyadenylation signal is controlled by a secondary RNA structure that occludes part of the AAUAAA hexamer motif, which we have termed the polyA hairpin. Opening the 5′ hairpin by mutation triggered premature polyadenylation and caused reduced synthesis of viral RNA, indicating that the RNA structure plays a pivotal role in repression of the 5′ polyadenylation site. Apparently, the same hairpin structure does not interfere with efficient usage of the 3′ polyadenylation site, which may be due to the presence of the upstream enhancer element. However, when the 3′ hairpin was further stabilized by mutation, we measured a complete loss of 3′ polyadenylation. Thus, the thermodynamic stability of the polyA hairpin is delicately balanced to allow nearly complete repression of the 5′ site yet efficient activation of the 3′ site. This is the first report of regulated polyadenylation that is mediated by RNA secondary structure. A similar hairpin motif that occludes the polyadenylation signal can be proposed for other lentiviruses and members of the spumaretroviruses, suggesting that this represents a more general gene expression strategy of complex retroviruses

    Functional Analysis of the Complex trans-Activating Response Element RNA Structure in Simian Immunodeficiency Virus▿

    No full text
    Transcription of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) is activated through binding of the viral Tat protein to the trans-activating response (TAR) element at the 5′ end of the nascent transcript. Whereas HIV type 1 (HIV-1) TAR folds a simple hairpin structure, the corresponding domains of HIV-2 and SIVmac exhibit a more complex structure composed of three stem-loops. This structural polymorphism may be attributed to additional functions of TAR in HIV-2/SIVmac replication. We recently constructed an SIVmac variant that does not require the Tat-TAR interaction for transcription. We used this variant to study additional roles of TAR in SIVmac replication and generated mutants with a truncated TAR structure. We demonstrate that partial or nearly complete removal of TAR does not impair viral transcription, RNA processing, and translation. Moreover, these deletions do not significantly affect virus replication in the PM1 T-cell line and macaque peripheral blood mononuclear cells. These results demonstrate that the complex TAR structure in SIVmac has no other essential function in virus replication in vitro besides its role in Tat-mediated activation of transcription

    HIV-1 3'-Polypurine Tract Mutations Confer Dolutegravir Resistance by Switching to an Integration-Independent Replication Mechanism via 1-LTR Circles

    No full text
    Several recent studies indicate that mutations in the human immunodeficiency virus type 1 (HIV-1) 3'polypurine tract (3'PPT) motif can reduce sensitivity to the integrase inhibitor dolutegravir (DTG). Using an in vivo systematic evolution of ligands by exponential enrichment (SELEX) approach, we discovered that multiple different mutations in this viral RNA element can confer DTG resistance, suggesting that the inactivation of this critical reverse transcription element causes resistance. An analysis of the viral DNA products formed upon infection by these 3'PPT mutants revealed that they replicate without integration into the host cell genome, concomitant with an increased production of 1-LTR circles. As the replication of these virus variants is activated by the human T-lymphotropic virus 1 (HTLV-1) Tax protein, a factor that reverses epigenetic silencing of episomal HIV DNA, these data indicate that the 3'PPT-mutated viruses escape from the integrase inhibitor DTG by switching to an integration-independent replication mechanism. IMPORTANCE The integrase inhibitor DTG is a potent inhibitor of HIV replication and is currently recommended in drug regimens for people living with HIV. Whereas HIV normally escapes from antiviral drugs by the acquisition of specific mutations in the gene that encodes the targeted enzyme, mutational inactivation of the viral 3'PPT sequence, an RNA element that has a crucial role in the viral reverse transcription process, was found to allow HIV replication in the presence of DTG in cell culture experiments. While the integration of the viral DNA into the cellular genome is considered one of the hallmarks of retroviruses, including HIV, 3'PPT inactivation caused integration-independent replication, which can explain the reduced DTG sensitivity. Whether this exotic escape route can also contribute to viral escape in HIV-infected persons remains to be determined, but our results indicate that screening for 3'PPT mutations in patients that fail on DTG therapy should be considered
    corecore