3 research outputs found

    N-benzyl-N-methyldecan-1-amine and its derivative mitigate 2,4- dinitrobenzenesulfonic acid-induced colitis and collagen-induced rheumatoid arthritis

    Get PDF
    As our previous study revealed that N-benzyl-N-methyldecan-1-amine (BMDA), a new molecule originated from Allium sativum, exhibits anti-neoplastic activities, we herein explored other functions of the compound and its derivative [decyl-(4-methoxy-benzyl)-methyl-amine; DMMA] including anti-inflammatory and anti-oxidative activities. Pretreatment of THP-1 cells with BMDA or DMMA inhibited tumor necrosis factor (TNF)-α and interleukin (IL)-1β production, and blocked c-jun terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), MAPKAP kinase (MK)2 and NF-κΒ inflammatory signaling during LPS stimulation. Rectal treatment with BMDA or DMMA reduced the severity of colitis in 2,4-dinitrobenzenesulfonic acid (DNBS)-treated rat. Consistently, administration of the compounds decreased myeloperoxidase (MPO) activity (representing neutrophil infiltration in colonic mucosa), production of inflammatory mediators such as cytokine-induced neutrophil chemoattractant (CINC)-3 and TNF-α, and activation of JNK and p38 MAPK in the colon tissues. In addition, oral administration of these compounds ameliorated collagen-induced rheumatoid arthritis (RA) in mice. The treatment diminished the levels of inflammatory cytokine transcripts, and protected connective tissues through the expression of anti-oxidation proteins such as nuclear factor erythroid-related factor (Nrf)2 and heme oxygenase (HO)1. Additionally, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels did not differ between the BMDA- or DMMA-treated and control animals, indicating that the compounds do not possess liver toxicity. Taken together, these findings propose that BMDA and DMMA could be used as new drugs for curing inflammatory bowel disease (IBD) and RA

    VNN3 is a potential novel biomarker for predicting prognosis in clear cell renal cell carcinoma

    No full text
    Although pathological observations provide approximate prognoses, it is difficult to achieve prognosis in patients with existing prognostic factors. Therefore, it is very important to find appropriate biomarkers to achieve accurate cancer prognosis. Renal cell carcinoma (RCC) has several subtypes, the discrimination of which is crucial for proper treatment. Here, we present a novel biomarker, VNN3, which is used to prognose clear cell renal cell carcinoma (ccRCC), the most common and aggressive subtype of kidney cancer. Patient information analyzed in our study was extracted from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) cohorts. VNN3 expression was considerably higher in stages III and IV than in stages I and II. Moreover, Kaplan–Meier curves associated high VNN3 expression with poor prognoses (TCGA, p < .0001; ICGC, p = .00076), confirming that ccRCC prognosis can be predicted via VNN3 expression patterns. Consistent with all patient results, the prognosis of patients with higher VNN3 expression was worse in both low stage (I and II) and high stage (III and IV) (TCGA, p < 0.0001 in stage I and II; ICGC, p = 0.028 in stage I and II; TCGA, p = 0.005 in stage III and IV). Area under the curve and receiver operating characteristic curves supported our results that highlighted VNN3 expression as a suitable ccRCC biomarker. Multivariate analysis also verified the prognostic performance of VNN3 expression (TCGA, p < .001; ICGC, p = .017). Altogether, we suggest that VNN3 is applicable as a new biomarker to establish prognosis in patients with ccRCC

    DataSheet1_N-benzyl-N-methyldecan-1-amine and its derivative mitigate 2,4- dinitrobenzenesulfonic acid-induced colitis and collagen-induced rheumatoid arthritis.docx

    No full text
    As our previous study revealed that N-benzyl-N-methyldecan-1-amine (BMDA), a new molecule originated from Allium sativum, exhibits anti-neoplastic activities, we herein explored other functions of the compound and its derivative [decyl-(4-methoxy-benzyl)-methyl-amine; DMMA] including anti-inflammatory and anti-oxidative activities. Pretreatment of THP-1 cells with BMDA or DMMA inhibited tumor necrosis factor (TNF)-α and interleukin (IL)-1β production, and blocked c-jun terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), MAPKAP kinase (MK)2 and NF-κΒ inflammatory signaling during LPS stimulation. Rectal treatment with BMDA or DMMA reduced the severity of colitis in 2,4-dinitrobenzenesulfonic acid (DNBS)-treated rat. Consistently, administration of the compounds decreased myeloperoxidase (MPO) activity (representing neutrophil infiltration in colonic mucosa), production of inflammatory mediators such as cytokine-induced neutrophil chemoattractant (CINC)-3 and TNF-α, and activation of JNK and p38 MAPK in the colon tissues. In addition, oral administration of these compounds ameliorated collagen-induced rheumatoid arthritis (RA) in mice. The treatment diminished the levels of inflammatory cytokine transcripts, and protected connective tissues through the expression of anti-oxidation proteins such as nuclear factor erythroid-related factor (Nrf)2 and heme oxygenase (HO)1. Additionally, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels did not differ between the BMDA- or DMMA-treated and control animals, indicating that the compounds do not possess liver toxicity. Taken together, these findings propose that BMDA and DMMA could be used as new drugs for curing inflammatory bowel disease (IBD) and RA.</p
    corecore