117 research outputs found

    Comment on ``Loss of Superconducting Phase Coherence in YBa_2Cu_3O_7 Films: Vortex-Loop Unbinding and Kosterlitz-Thouless Phenomena''

    Full text link
    Recently, Kotzler et al. measured the frequency-dependent conductance for YBa_2Cu_3O_7 and interpreted their results as evidences that the decay of the superfluid density is caused by a 3D vortex loop proliferation mechanism and a dimensional crossover when the correlation length ξc\xi_c along the c axis becomes comparable to the sample thickness dd [PRL 87, 127005(2001)]. In this Comment, we show that the complex conductance data presented by Kotzler et al. have characteristic key features not compatible with their analysis, which are instead described by the existing phenomenology of 2D vortex fluctuation associated with a partial decoupling of CuO_2-planes.Comment: 2 pages, 1 figure, accepted in PR

    Critical currents for vortex defect motion in superconducting arrays

    Full text link
    We study numerically the motion of vortices in two-dimensional arrays of resistively shunted Josephson junctions. An extra vortex is created in the ground states by introducing novel boundary conditions and made mobile by applying external currents. We then measure critical currents and the corresponding pinning energy barriers to vortex motion, which in the unfrustrated case agree well with previous theoretical and experimental findings. In the fully frustrated case our results also give good agreement with experimental ones, in sharp contrast with the existing theoretical prediction. A physical explanation is provided in relation with the vortex motion observed in simulations.Comment: To appear in Physical Review

    Performance of networks of artificial neurons: The role of clustering

    Full text link
    The performance of the Hopfield neural network model is numerically studied on various complex networks, such as the Watts-Strogatz network, the Barab{\'a}si-Albert network, and the neuronal network of the C. elegans. Through the use of a systematic way of controlling the clustering coefficient, with the degree of each neuron kept unchanged, we find that the networks with the lower clustering exhibit much better performance. The results are discussed in the practical viewpoint of application, and the biological implications are also suggested.Comment: 4 pages, to appear in PRE as Rapid Com

    Phase diagram of generalized fully frustrated XY model in two dimensions

    Full text link
    It is shown that the phase diagram of the two-dimensional generalized fully-frustrated XY model on a square lattice contains a crossing of the chirality transition and the Kosterlitz-Thouless (KT) transition, as well as a stable phase characterized by a finite helicity modulus Υ\Upsilon and an unbroken chirality symmetry. The crossing point itself is consistent with a critical point without any jump in Υ\Upsilon, with the size (LL) scaling ΥL0.63% \Upsilon\sim L^{-0.63} and the critical index ν0.77\nu\approx0.77. The KT transition line remains continuous beyond the crossing but eventually turns into a first-order line. The results are established using Monte-Carlo simulations of the staggered magnetization, helicity modulus, and the fourth-order helicity modulus.Comment: 5 pages, 5 figures, in two column

    Magnetic-field dependence of dynamical vortex response in two-dimensional Josephson junction arrays and superconducting films

    Full text link
    The dynamical vortex response of a two-dimensional array of the resistively shunted Josephson junctions in a perpendicular magnetic field is inferred from simulations. It is found that, as the magnetic field is increased at a fixed temperature, the response crosses over from normal to anomalous, and that this crossover can be characterized by a single dimensionless parameter. It is described how this crossover should be reflected in measurements of the complex impedance for Josephson junction arrays and superconducting films.Comment: 4 pages including 5 figures in two columns, final versio

    Phase ordering on small-world networks with nearest-neighbor edges

    Full text link
    We investigate global phase coherence in a system of coupled oscillators on a small-world networks constructed from a ring with nearest-neighbor edges. The effects of both thermal noise and quenched randomness on phase ordering are examined and compared with the global coherence in the corresponding \xy model without quenched randomness. It is found that in the appropriate regime phase ordering emerges at finite temperatures, even for a tiny fraction of shortcuts. Nature of the phase transition is also discussed.Comment: 5 pages, 4 figures, Phys. Rev. E (in press

    Evidence of Two Distinct Dynamic Critical Exponents in Connection with Vortex Physics

    Full text link
    The dynamic critical exponent zz is determined from numerical simulations for the three-dimensional (3D) lattice Coulomb gas (LCG) and the 3D XY models with relaxational dynamics. It is suggested that the dynamics is characterized by two distinct dynamic critical indices z0z_0 and zz related to the divergence of the relaxation time τ\tau by τξz0\tau\propto \xi^{z_0} and τkz\tau\propto k^{-z}, where ξ\xi is the correlation length and kk the wavevector. The values determined are z01.5z_0\approx 1.5 and z1z\approx 1 for the 3D LCG and z01.5z_0\approx 1.5 and z2z\approx 2 for the 3D XY model. It is argued that the nonlinear IVIV exponent relates to z0z_0, whereas the usual Hohenberg-Halperin classification relates to zz. Possible implications for the interpretation of experiments are pointed out. Comparisons with other existing results are discussed.Comment: to appear in PR

    Vortex Fluctuations in High-Tc Films: Flux Noise Spectrum and Complex Impedance

    Full text link
    The flux noise spectrum and complex impedance for a 500 {\AA} thick YBCO film are measured and compared with predictions for two dimensional vortex fluctuations. It is verified that the complex impedance and the flux noise spectra are proportional to each other, that the logarithm of the flux noise spectra for different temperatures has a common tangent with slope 1\approx -1, and that the amplitude of the noise decreases as d3d^{-3}, where dd is the height above the film at which the magnetic flux is measured. A crossover from normal to anomalous vortex diffusion is indicated by the measurements and is discussed in terms of a two-dimensional decoupling.Comment: 5 pages including 4 figures in two columns, to appear in Phys. Rev. Let

    Current-voltage characteristics of the two-dimensional XY model with Monte Carlo dynamics

    Full text link
    Current-voltage characteristics and the linear resistance of the two-dimensional XY model with and without external uniform current driving are studied by Monte Carlo simulations. We apply the standard finite-size scaling analysis to get the dynamic critical exponent zz at various temperatures. From the comparison with the resistively-shunted junction dynamics, it is concluded that zz is universal in the sense that it does not depend on details of dynamics. This comparison also leads to the quantification of the time in the Monte Carlo dynamic simulation.Comment: 5 pages in two columns including 5 figures, to appear in PR
    corecore