64 research outputs found

    Genetic Variants of PICALM rs541458 Modulate Brain Spontaneous Activity in Older Adults With Amnestic Mild Cognitive Impairment

    Get PDF
    Background: Phosphatidylinositol binding clathrin assembly protein (PICALM) rs541458 C allele has been identified and validated to be associated with a reduction of Alzheimer's disease (AD) risk. Nevertheless, the exact mechanisms through which the variant exert its disease-relevant association remain to be elucidated. This study is to determine whether PICALM rs541458 polymorphism modulates functional magnetic resonance imaging measured brain spontaneous activity in older adults with amnestic mild cognitive impairment (aMCI).Methods: Thirty five aMCI patients and twenty six healthy controls (HC) were enrolled in this study. Each individual was genotyped for rs541458 and scanned with resting-state functional magnetic resonance imaging. Each group was divided into two subgroups (C carriers and TT genotype). Brain activity was measured with amplitude of low-frequency fluctuation (ALFF).Results: The aMCI patients showed decreased ALFF in left inferior frontal gyrus, superior temporal gyrus and insula, while increased ALFF in right cuneus, calcarine, and bilateral posterior cingulate and precuneus. A significant interaction between diagnosis (aMCI vs. HC) and PICALM rs541458 genotype (C carriers vs. TT) on ALFF was observed mainly in the right frontal lobe, with aMCI C carriers and TT genotype in HC showing significantly lower ALFF than HC C carriers. While only negative correlation between ALFF and verbal fluency test was found in HC C carriers (r = āˆ’0.543, p = 0.030).Conclusions: This study provided preliminary evidences that PICALM rs541458 variations may modulate the spontaneous brain activity in aMCI patients

    Behavioral and Resting State Functional Connectivity Effects of High Frequency rTMS on Disorders of Consciousness: A Sham-Controlled Study

    Get PDF
    Objectives: A combined approach of behavioral characteristics and network properties was applied to explore the effect of repetitive transcranial magnetic stimulation (rTMS) on disorders of consciousness (DOC) and to observe changes in brain network connections before and after the stimulation.Methods: A total of 7 DOC patients and 11 healthy controls were enrolled. The study was designed as a randomized, sham-controlled study. All DOC patients were given 20 Hz rTMS real and sham stimuli to the left M1 region, with each stimulus lasting for 5 consecutive working days and the interval between two stimuli being 1 week. Coma Recovery Scale-Revised (CRS-R) and resting state functional MRI data before and after stimuli were collected. The functional connection (FC) of the default mode network and the frontoparietal network were chosen as the central target to compare differences in network connections between the DOC group and the normal control group. For DOC patients, changes in behavior and brain function before and after real and sham stimuli were also assessed as a group and individually.Results: (1). The overall analyses showed no significant changes of CRS-R scores or brain FC following real or sham rTMS stimuli in the DOC patients. However, real rTMS stimuli tended to enhance the FC of nodes in left lateral parietal cortex (LPC), left inferior temporal cortex (ITC) and right dorsolateral prefrontal cortex (DLPFC). (2). The individual analyses showed one minimally conscious state (MCS) patient presented with a obviously increased CRS-R score following real rTMS stimuli, and a visibly enhanced connectivity was observed in the nodes of left LPC, left ITC and right DLPFC of this patient.Conclusion: Our findings did not provide sufficient evidence of therapeutic effect of 20 Hz rTMS over the left M1 in DOC. However, MCS patients shortly after brain injury may possibly benefit from rTMS. Reconstruction of the left LPC, the left ITC and the right DLPFC may be the brain networking foundation of improvements in consciousness from rTMS

    Functional Connectivity of Anterior Insula Predicts Recovery of Patients With Disorders of Consciousness

    Get PDF
    Background: We hypothesize that the anterior insula is important for maintenance of awareness. Here, we explored the functional connectivity alterations of the anterior insula with changes in the consciousness level or over time in patients with disorders of consciousness (DOC) and determined potential correlation with clinical outcomes.Methods: We examined 20 participants (9 patients with DOC and 11 healthy controls). Each patient underwent resting-state functional magnetic resonance imaging (rs-fMRI) and a standardized Coma Recovery Scale-Revised (CRS-R) assessment on the same day. We categorized the patients according to the prognosis: those who emerged from a minimally conscious state (recovery group, n = 4) and those who remained in the unconscious state (unrecovery group, n = 5). Two rs-fMRI scans were obtained from all patients, and the second scan of patients in the recovery group was obtained after they regained consciousness. We performed seed-based fMRI analysis and selected the left ventral agranular insula (vAI) and dorsal agranular insula (dAI) as the regions of interest. Correlations with CRS-R were determined with the Spearman's correlation coefficient.Results: Compared with healthy controls, the functional connectivity between dAI and gyrus rectus of patients who recovered was significantly increased (p < 0.001, cluster-wise family-wise error rate [FWER] < 0.05). The second rs-fMRI scan of patients who remained with DOC showed a significant decreased functional connectivity between the dAI to contralateral insula, pallidum, bilateral inferior parietal lobule (IPL), precentral gyrus, and middle cingulate cortex (p < 0.001, cluster-wise FWER < 0.05) as well as the functional connectivity between vAI to caudate and cingulum contrast to controls (p < 0.001, cluster-wise FWER < 0.05). Finally, the functional connectivity strength of dAI-temporal pole (Spearman r = 0.491, p < 0.05) and dAI-IPL (Spearman r = 0.579, p < 0.05) were positively correlated with CRS-R scores in all DOC patients. The connectivity of dAI-IPL was also positively correlated with clinical scores in the recovery group (Spearman r = 0.807, p < 0.05).Conclusions: Our findings indicate that the recovery of consciousness is associated with an increased connectivity of the dAI to IPL and temporal pole. This possibly highlights the role of the insula in human consciousness. Moreover, longitudinal variations in dAI-IPL and dAI-temporal pole connectivity may be potential hallmarks in the outcome prediction of DOC patients

    Functional Foveal Splitting: Evidence from Neuropsychological and Multimodal MRI Investigations in a Chinese Patient with a Splenium Lesion

    Get PDF
    It remains controversial and hotly debated whether foveal information is double-projected to both hemispheres or split at the midline between the two hemispheres. We investigated this issue in a unique patient with lesions in the splenium of the corpus callosum and the left medial occipitotemporal region, through a series of neuropsychological tests and multimodal MRI scans. Behavioral experiments showed that (1) the patient had difficulties in reading simple and compound Chinese characters when they were presented in the foveal but left to the fixation, (2) he failed to recognize the left component of compound characters when the compound characters were presented in the central foveal field, (3) his judgments of the gender of centrally presented chimeric faces were exclusively based on the left half-face and he was unaware that the faces were chimeric. Functional MRI data showed that Chinese characters, only when presented in the right foveal field but not in the left foveal field, activated a region in the left occipitotemporal sulcus in the mid-fusiform, which is recognized as visual word form area. Together with existing evidence in the literature, results of the current study suggest that the representation of foveal stimuli is functionally split at object processing levels

    The changes of central auditory processing function and its electroencephalogram in patients with mild cognitive impairment and early Alzheimerā€™s disease

    No full text
    Background: The aim of this study is to assess the central auditory processing (CAP) function and its electroencephalogram (EEG) in patients with mild cognitive impairment (MCI) and the early stage of Alzheimer's disease (AD). Methods: In this study, 25 patients with early AD, 22 patients with MCI, and 22 matched healthy controls (HC) were included. After cognitive assessment, binaural processing function was assessed using the staggered spondaic word (SSW) test, and auditory working memory was assessed by auditory n-back paradigm, while EEG was recorded. Patients' behavioral indicators, event-related potentials (ERPs) components, and function connection (FC) were compared between groups and the related factors were analyzed. Results: The difference of the accuracy of behavioral tests for the three groups of subjects was significant and all the behavioral indicators were positively correlated with cognitive function scores. Intergroup differences in amplitude (pĀ <Ā 0.05) and latency (pĀ <Ā 0.01) were significant for P3 in the 1-back paradigm. In the SSW test, AD and MCI patients showed reduced connectivity between the left frontal lobe and the whole brain in the Ī“-band, while in the n-back paradigm, patients with MCI and early AD showed reduced association of frontal leads with central and parietal leads in the Ī“-band. Conclusions: Patients with MCI and early AD have reduced CAP functions including binaural processing function and auditory working memory functions. This reduction is significantly associated with reduced cognitive function, and is reflected in different patterns of changes in ERP as well as functional connectivity in the brain
    • ā€¦
    corecore