665 research outputs found

    Grids of white dwarf evolutionary models with masses from M= 0.1 to 1.2 Ms

    Full text link
    We present detailed evolutionary calculations for carbon - oxygen - and helium - core white dwarf (WD) models with masses ranging from M= 0.1 to M= 1.2 solar masses and for metallicities Z= 0.001 and Z= 0. The sequences cover a wide range of hydrogen envelopes as well. We employed a detailed WD evolutionary code. In particular, the energy transport by convectcion is treated within the formalism of the full spectrum turbulence theory. The set of models presented here is very detailed and should be valuable for the interpretation of the observational data on low - mass WDs recently discovered in numerous binary configurations and also for the general problem of determining the theoretical luminosity function for WDs. In this context, we compare our cooling sequences with the observed WD luminosity function recently improved by Leggett, Ruiz and Bergeron (1998) and we obtain an age for the Galactic disc of approximately 8 Gyr. Finally, we applied the results of this paper to derive stellar masses of a sample of low - mass white dwarfs.Comment: 9 pages, 8 figures; accepted for publication in MNRAS; replaced with minor corrections to tex

    Self-bound models of compact stars and recent mass-radius measurements

    Full text link
    The exact composition of a specific class of compact stars, historically referred to as "neutron stars", is still quite unknown. Possibilities ranging from hadronic to quark degrees of freedom, including self-bound versions of the latter have been proposed. We specifically address the suitability of strange star models (including pairing interactions) in this work, in the light of new measurements available for four compact stars. The analysis shows that these data might be explained by such an exotic equation of state, actually selecting a small window in parameter space, but still new precise measurements and also further theoretical developments are needed to settle the subject.Comment: To appear in PR

    The potential of the variable DA white dwarf G117-B15A as a tool for Fundamental Physics

    Get PDF
    White dwarfs are well studied objects. The relative simplicity of their physics allows to obtain very detailed models which can be ultimately compared with their observed properties. Among white dwarfs there is a specific class of stars, known as ZZ-Ceti objects, which have a hydrogen-rich envelope and show periodic variations in their light curves. G117-B15A belongs to this particular set of stars. The luminosity variations have been successfully explained as due to g-mode pulsations. G117-B15A has been recently claimed to be the most stable optical clock ever found, being the rate of change of its 215.2 s period very small: \dot{P}= (2.3 +- 1.4)x10^{-15} s s^-1, with a stability comparable to that of the most stable millisecond pulsars. The rate of change of the period is closely related to its cooling timescale, which can be accurately computed. In this paper we study the pulsational properties of G117-B15A and we use the observed rate of change of the period to impose constraints on the axion emissivity and, thus, to obtain a preliminary upper bound to the mass of the axion. This upper bound turns out to be 4cos^{2}{\beta} meV at the 95% confidence level. Although there are still several observational and theoretical uncertainties, we conclude that G117-B15A is a very promising stellar object to set up constraints on particle physics.Comment: 32 pages, 14 figures, accepted for publication in New Astronom

    Preliminary results on tropospheric ZTD estimation by smartphone

    Get PDF
    The Global Navigation Satellite System (GNSS) receiver is one of the many sensors embedded in smartphones. The early versions of the Android operating system could only access limited information from the GNSS, allowing the related Application Program Interface (API) to obtain only the location. With the development of the Android 7.0 (Nougat) operating system in May 2016, raw measurements from the internal GNSS sensor installed in the smartphone could be accessed. This work aims to show an initial analysis regarding the feasibility of Zenith Total Delay (ZTD) estimation by GNSS measurements extracted from smartphones, evaluating the accuracy of estimation to open a new window on troposphere local monitoring. Two different test sites have been considered, and two different types of software for data processing have been used. ZTDs have been estimated from both a dual-frequency and a multi-constellation receiver embedded in the smartphone, and from a GNSS Continuously Operating Reference Station (CORS). The results have shown interesting performances in terms of ZTD estimation from the smartphone in respect of the estimations obtained with a geodetic receiver

    Rydberg stabilization of atoms in strong fields: the "magic mountain" in the chaotic sea

    Get PDF
    We discuss the classical problem of an hydrogen atom interacting with a monochromatic field. We illustrate in particular, analytically and numerically, the stabilization mechanism and give theoretical expressions for the stabilization borders
    • …
    corecore