15 research outputs found

    Elastic properties of a tungsten-silver composite by reconstruction and computation

    Full text link
    We statistically reconstruct a three-dimensional model of a tungsten-silver composite from an experimental two-dimensional image. The effective Young's modulus (EE) of the model is computed in the temperature range 25-1060^o C using a finite element method. The results are in good agreement with experimental data. As a test case, we have reconstructed the microstructure and computed the moduli of the overlapping sphere model. The reconstructed and overlapping sphere models are examples of bi-continuous (non-particulate) media. The computed moduli of the models are not generally in good agreement with the predictions of the self-consistent method. We have also evaluated three-point variational bounds on the Young's moduli of the models using the results of Beran, Molyneux, Milton and Phan-Thien. The measured data were close to the upper bound if the properties of the two phases were similar (1/6<E1/E2<61/6 < E_1 /E_2 < 6).Comment: 23 Pages, 12 Figure

    Pion light-cone wave function and pion distribution amplitude in the Nambu-Jona-Lasinio model

    Get PDF
    We compute the pion light-cone wave function and the pion quark distribution amplitude in the Nambu-Jona-Lasinio model. We use the Pauli-Villars regularization method and as a result the distribution amplitude satisfies proper normalization and crossing properties. In the chiral limit we obtain the simple results, namely phi_pi(x)=1 for the pion distribution amplitude, and = -M / f_pi^2 for the second moment of the pion light-cone wave function, where M is the constituent quark mass and f_pi is the pion decay constant. After the QCD Gegenbauer evolution of the pion distribution amplitude good end-point behavior is recovered, and a satisfactory agreement with the analysis of the experimental data from CLEO is achieved. This allows us to determine the momentum scale corresponding to our model calculation, which is close to the value Q_0 = 313 MeV obtained earlier from the analogous analysis of the pion parton distribution function. The value of is, after the QCD evolution, around (400 MeV)^2. In addition, the model predicts a linear integral relation between the pion distribution amplitude and the parton distribution function of the pion, which holds at the leading-order QCD evolution.Comment: mistake in Eq.(38) correcte

    Mean first-passage time for random walks on undirected networks

    Full text link
    In this paper, by using two different techniques we derive an explicit formula for the mean first-passage time (MFPT) between any pair of nodes on a general undirected network, which is expressed in terms of eigenvalues and eigenvectors of an associated matrix similar to the transition matrix. We then apply the formula to derive a lower bound for the MFPT to arrive at a given node with the starting point chosen from the stationary distribution over the set of nodes. We show that for a correlated scale-free network of size NN with a degree distribution P(d)āˆ¼dāˆ’Ī³P(d)\sim d^{-\gamma}, the scaling of the lower bound is N1āˆ’1/Ī³N^{1-1/\gamma}. Also, we provide a simple derivation for an eigentime identity. Our work leads to a comprehensive understanding of recent results about random walks on complex networks, especially on scale-free networks.Comment: 7 pages, no figures; definitive version published in European Physical Journal

    Measuring the Masses of Supermassive Black Holes

    No full text
    corecore