2,665 research outputs found

    Experiment K-6-24, K-6-25, K-6-26. Radiation dosimetry and spectrometry

    Get PDF
    Radiation experiments flown by the University of San Francisco on the Cosmos 1887 spacecraft were designed to measure the depth dependence of both total dose and heavy particle flux, dose and dose equivalent, down to very thin shielding. Three experiments were flown and were located both inside and outside the Cosmos 1887 spacecraft. Tissue absorbed dose rates of 264 to 0.028 rad d(-1) under shielding of 0.013 to 3.4 g/sq cm of (7)LiF were found outside the spacecraft and 0.025 rad d(-1) inside. Heavy particle fluxes of 3.43 to 1.03 x 10 to the minus 3rd power cm -2 sub s -1 sub sr -1 under shielding of 0.195 to 1.33 g/sq cm plastic were found outside the spacecraft and 4.25 times 10 to the minus 4th power cm -2 sub s -1 sub sr -1 inside (LET infinity H2O greater than or equal to 4 keV/micron m). The corresponding heavy particle dose equivalent rates outside the spacecraft were 30.8 to 19.8 mrem d(-1) and 11.4 mrem d(-1) inside. The large dose and particle fluxes found at small shielding thicknesses emphasize the importance of these and future measurements at low shielding, for predicting radiation effects on space materials and experiments where shielding is minimal and on astronauts during EVA. The Cosmos 1887 mission contained a variety of international radiobiological investigations to which the measurements apply. The high inclination orbit (62 degrees) of this mission provided a radiation environment which is seldom available to U.S. investigators. The radiation measurements will be compared with those of other research groups and also with those performed on the Shuttle, and will be used to refine computer models employed to calculate radiation exposures on other spacecraft, including the Space Station

    Light-heavy ion measurements in CR-39 located on the Earth side of LDEF

    Get PDF
    The azimuthal angle distribution and the charge and energy spectra of selected light-heavy (5 less than or equal to Z less than or equal to 8) stopping particles were measured in a single layer of CR-39 plastic nuclear track detector (PNTD) from the stack of the A0015 experiment located on the Earth-end of the LDEF satellite. The directional incidence of the trapped protons is studied by comparing the azimuthal angle distribution of selected recoils, obtained in the LDEF detectors, to that obtained through calibrations of PNTD's with exposures performed with 200 MeV proton beams from different directions

    Radiation experiments on Cosmos 2044: K-7-41, parts A, B, C, D, E

    Get PDF
    The Cosmos 2044 biosatellite mission offered the opportunity for radiation measurements under conditions which are seldom available (an inclination of 82.3 deg and attitude of 294 x 216 km). Measurements were made on the outside of the spacecraft under near-zero shielding conditions. Also, this mission was the first in which active temperature recorders (the ATR-4) were flown to record the temperature profiles of detector stacks. Measurements made on this mission provide a comparison and test for modeling of depth doses and LET spectra for orbital parameters previously unavailable. Tissue absorbed doses from 3480 rad (252 rad/d) down to 0.115 rad (8.33 mrad/d) were measured at different depths (0.0146 and 3.20 g/sq cm, respectively) with averaged TLD readings. The LET spectra yielded maximum and minimum values of integral flux of 27.3 x 10(exp -4) and 3.05 x 10(exp -4)/sq cm/s/sr, of dose rate of 7.01 and 1.20 mrad/d, and of dose equivalent rate of 53.8 and 11.6 mrem/d, for LET(sub infinity)-H2O is greater than or equal to 4 keV/micron. Neutron measurements yielded 0.018 mrem/d in the thermal region, 0.25 mrem/d in the resonance region and 3.3 mrem/d in the high energy region. The TLD depth dose and LET spectra were compared with calculations from the modeling codes. The agreement is good but some further refinements are in order. In comparing measurements on Cosmos 2044 with those from previous Cosmos missions (orbital inclinations of 62.8 deg) there is a greater spread (maximum to minimum) in depth doses and an increased contribution from GCRs, and higher LET particles, in the heavy particle fluxes

    Ground-based dosimetry support for experiment AR002

    Get PDF
    Actinomyces levoris colonies were exposed to alpha particles at the 184-inch cyclotron, and Streptomyces levoris colonies were exposed to Ne-20 ions. A description is given of the experimental conditions for each experiment along with tables listing the doses delivered to the colonies. The doses for the Actinomyces levoris exposures came from calibrations made by the cyclotron operators, while the doses for the Streptomyces levoris exposures came in part from cave calibrations and also in part from calculations

    Ionizing radiation exposure of LDEF

    Get PDF
    The Long Duration Exposure Facility (LDEF) was launched into orbit by the Space Shuttle 'Challenger' mission 41C on 6 April 1984 and was deployed on 8 April 1984. The original altitude of the circular orbit was 258.5 nautical miles (479 km) with the orbital inclination being 28.5 degrees. The 21,500 lb NASA Langley Research Center satellite, having dimensions of some 30x14 ft was one of the largest payloads ever deployed by the Space Shuttle. LDEF carried 57 major experiments and remained in orbit five years and nine months (completing 32,422 orbits). It was retrieved by the Shuttle 'Columbia' on January 11, 1990. By that time, the LDEF orbit had decayed to the altitude of 175 nm (324 km). The experiments were mounted around the periphery of the LDEF on 86 trays and involved the representation of more than 200 investigators, 33 private companies, 21 universities, seven NASA centers, nine Department of Defense laboratories and eight foreign countries. The experiments covered a wide range of disciplines including basic science, electronics, optics, materials, structures, power and propulsion. The data contained in the LDEF mission represents an invaluable asset and one which is not likely to be duplicated in the foreseeable future. The data and the subsequent knowledge which will evolve from the analysis of the LDEF experiments will have a very important bearing on the design and construction of the Space Station Freedom and indeed on other long-term, near-earth orbital space missions. A list of the LDEF experiments according to experiment category and sponsor is given, as well as a list of experiments containing radiation detectors on LDEF including the LDEF experiment number, the title of the experiment, the principal investigator, and the type of radiation detectors carried by the specific experiment

    Charged particle tracks in polymers number 6 - A method for charge determination of heavy, multicharged cosmic ray particles

    Get PDF
    Charge determination of heavy, multicharged cosmic ray particles from particle tracks in cellulose nitrate nuclear emulsion stack

    Dosimetric investigations of cosmic radiation aboard the Kosmos-936 AES (joint Soviet-American experiment K-206)

    Get PDF
    The Soviet and American parts of the experiment are described separately. Particular attention was given to the following problems: placement of the detectors; study of neutron radiation within the biosatellite; and studies of fragmentation of heavy nuclei on accelerators. Unified methods were developed for the calibration of Soviet and American detectors

    Radiation exposure of LDEF: Initial results

    Get PDF
    Initial results from LDEF include radiation detector measurements from four experiments, P0006, P0004, M0004, and A0015. The detectors were located on both the leading and trailing edges of the orbiter and also on the Earthside end. This allowed the directional dependence of the incoming radiation to be measured. Total absorbed doses from thermoluminescent detectors (TLDs) verified the predicted spatial east-west dose ratio dependence of a factor approx. 2.5, due to trapped proton anisotropy in the South Atlantic Anomaly. On the trailing edge of the orbiter a range of doses from 6.64 to 2.91 Gy were measured under Al equivalent shielding of 0.42 to 1.11 g/sq cm. A second set of detectors near this location yielded doses of 6.48 to 2.66 Gy under Al equivalent shielding of 0.48 to 15.4 g/sq cm. On the leading edge, doses of 2.58 to 2.10 Gy were found under Al equivalent shielding of 1.37 to 2.90 g/sq cm. Initial charged particle LET (linear energy transfer) spectra, fluxes, doses and dose equivalents, for LET in H2O greater than or = 8 keV/micron, were measured with plastic nuclear track detectors (PNTDs) located in two experiments. Also preliminary data on low energy neutrons were obtained from detectors containing (6)LiF foils

    Environmental Radiation Measurements on MIR Station

    Get PDF
    Environmental radiation levels on the Russian space station Mir are being monitored under differing shielding conditions by a series of six area passive dosimeters (APDs) placed at individual locations inside the Core and Kvant 2 modules, and by an External Dosimeter Array (EDA) to be-deployed on the exterior surface of the Kvant 2 module. Each APD and the EDA contains CR-39 plastic nuclear track detectors (PNTDs) for measurement of LET spectra and TLDs for absorbed dose measurements. Two of the missions, NASA-2/Mir-21 and NASA-3/Mir-22 have been completed and the six APDs from each mission returned to Earth from Mir. This report covers progress to date on the analysis of TLDs and PNTDs from these two missions. For NASA-2/Mir-21, average mission absorbed dose rates varied from 271 to 407 micro-Gy/d at the APDS. For NASA-3/Mir-22, average mission absorbed dose rates varied from 265 to 421 micro-Gy/d
    • …
    corecore