7 research outputs found

    Complete cancer prevalence in Europe in 2020 by disease duration and country (EUROCARE-6): a population-based study

    No full text
    Background Cancer survivors-people living with and beyond cancer-are a growing population with different health needs depending on prognosis and time since diagnosis. Despite being increasingly necessary, complete information on cancer prevalence is not systematically available in all European countries. We aimed to fill this gap by analysing population-based cancer registry data from the EUROCARE-6 study. Methods In this population-based study, using incidence and follow-up data up to Jan 1, 2013, from 61 cancer registries, complete and limited-duration prevalence by cancer type, sex, and age were estimated for 29 European countries and the 27 countries in the EU (EU27; represented by 22 member states that contributed registry data) using the completeness index method. We focused on 32 malignant cancers defined according to the third edition of the International Classification of Diseases for Oncology, and only the first primary tumour was considered when estimating the prevalence. Prevalence measures are expressed in terms of absolute number of prevalent cases, crude prevalence proportion (reported as percentage or cases per 100 000 resident people), and age-standardised prevalence proportion based on the European Standard Population 2013. We made projections of cancer prevalence proportions up to Jan 1, 2020, using linear regression. Findings In 2020, 23 711 thousand (95% CI 23 565-23 857) people (5 center dot 0% of the population) were estimated to be alive after a cancer diagnosis in Europe, and 22 347 thousand (95% CI 22 210-22 483) in EU27. Cancer survivors were more frequently female (12 818 thousand [95% CI 12 720-12 917]) than male (10 892 thousand [10 785-11 000]). The five leading tumours in female survivors were breast cancer, colorectal cancer, corpus uterine cancer, skin melanoma, and thyroid cancer (crude prevalence proportion from 2270 [95%CI 2248-2292] per 100 000 to 301 [297-305] per 100 000). Prostate cancer, colorectal cancer, urinary bladder cancer, skin melanoma, and kidney cancer were the most common tumours in male survivors (from 1714 [95% CI 1686-1741] per 100 000 to 255 [249-260] per 100 000). The differences in prevalence between countries were large (from 2 to 10 times depending on cancer type), in line with the demographic structure, incidence, and survival patterns. Between 2010 and 2020, the number of prevalent cases increased by 3 center dot 5% per year (41% overall), partly due to an ageing population. In 2020, 14 850 thousand (95% CI 14 681-15 018) people were estimated to be alive more than 5 years after diagnosis and 9099 thousand (8909-9288) people were estimated to be alive more than 10 years after diagnosis, representing an increasing proportion of the cancer survivor population. Interpretation Our findings are useful at the country level in Europe to support evidence-based policies to improve the quality of life, care, and rehabilitation of patients with cancer throughout the disease pathway. Future work includes estimating time to cure by stage at diagnosis in prevalent cases. Copyright (c) 2024 Elsevier Ltd. All rights reserved

    Long-term survival for lymphoid neoplasms and national health expenditure (EUROCARE-6): a retrospective, population-based study

    No full text
    Background: Management of lymphoid malignancies requires substantial health system resources. Total national health expenditure might influence population-based lymphoid malignancy survival. We studied the long-term survival of patients with 12 lymphoid malignancy types and examined whether different levels of national health expenditure might explain differences in lymphoid malignancy prognosis between European countries and regions. Methods: For this observational, retrospective, population-based study, we analysed the EUROCARE-6 dataset of patients aged 15 or older diagnosed between 2001 and 2013 with one of 12 lymphoid malignancies defined according to International Classification of Disease for Oncology (third edition) and WHO classification, and followed up to 2014 (Jan 1, 2001-Dec 31, 2014). Countries were classified according to their mean total national health expenditure quartile in 2001-13. For each lymphoid malignancy, 5-year and 10-year age-standardised relative survival (ASRS) was calculated using the period approach. Generalised linear models indicated the effects of age at diagnosis, gender, and total national health expenditure on the relative excess risk of death (RER). Findings: 82 cancer registries (61 regional and 21 national) from 27 European countries provided data eligible for 10-year survival estimates comprising 890 730 lymphoid malignancy cases diagnosed in 2001-13. Median follow-up time was 13 years (IQR 13-14). Of the 12 lymphoid malignancies, the 10-year ASRS in Europe was highest for hairy cell leukaemia (82·6% [95% CI 78·9-86·5) and Hodgkin lymphoma (79·3% [78·6-79·9]) and lowest for plasma cell neoplasms (29·5% [28·9-30·0]). RER increased with age at diagnosis, particularly from 55-64 years to 75 years or older, for all lymphoid malignancies. Women had higher ASRS than men for all lymphoid malignancies, except for precursor B, T, or natural killer cell, or not-otherwise specified lymphoblastic lymphoma or leukaemia. 10-year ASRS for each lymphoid malignancy was higher (and the RER lower) in countries in the highest national health expenditure quartile than in countries in the lowest quartile, with a decreasing pattern through quartiles for many lymphoid malignancies. 10-year ASRS for non-Hodgkin lymphoma, the most representative class for lymphoid malignancies based on the number of incident cases, was 59·3% (95% CI 58·7-60·0) in the first quartile, 57·6% (55·2-58·7) in the second quartile, 55·4% (54·3-56·5) in the third quartile, and 44·7% (43·6-45·8) in the fourth quartile; with reference to the European mean, the RER was 0·80 (95% CI 0·79-0·82) in the first, 0·91 (0·90-0·93) in the second, 0·94 (0·92-0·96) in the third, and 1·45 (1·42-1·48) in the fourth quartiles. Interpretation: Total national health expenditure is associated with geographical inequalities in lymphoid malignancy prognosis. Policy decisions on allocating economic resources and implementing evidence-based models of care are needed to reduce these differences. Funding: Italian Ministry of Health, European Commission, Estonian Research Council

    Rare ovarian tumours: Epidemiology, treatment challenges in and outside a network setting

    No full text
    Purpose of the review: More than 50% of all gynaecological cancers can be classified as rare tumours (defined as an annual incidence of <6 per 100,000) and such tumours represent an important challenge for clinicians. Recent findings: Rare cancers account for more than one fifth of all new cancer diagnoses, more than any of the single common cancers alone. Reviewing the RARECAREnet database, some of the tumours occur infrequently, whilst others because of their natural history have a high prevalence, and therefore appear to be more common, although their incidence is also rare. Harmonization of medical practice, guidelines and novel trials are needed to identify rare tumours and facilitate the development of new treatments. Ovarian tumours are the focus of this review, but we comment on other rare gynaecological tumours, as the diagnosis and treatment challenges faced are similar. Future: This requires European collaboration, international partnerships, harmonization of treatment and collaboration to overcome the regulatory barriers to conduct international trials. Whilst randomized trials can be done in many tumour types, there are some for which conducting even single arm studies may be challenging. For these tumours alternative study designs, robust collection of data through national registries and audits could lead to improvements in the treatment of rare tumours. In addition, concentring the care of patients with rare tumours into a limited number of centres will help to build expertise, facilitate trials and improve outcomes

    Implementation of Recommendations on the Use of Corticosteroids in Severe COVID-19

    No full text
    Importance: Research diversity and representativeness are paramount in building trust, generating valid biomedical knowledge, and possibly in implementing clinical guidelines. Objectives: To compare variations over time and across World Health Organization (WHO) geographic regions of corticosteroid use for treatment of severe COVID-19; secondary objectives were to evaluate the association between the timing of publication of the RECOVERY (Randomised Evaluation of COVID-19 Therapy) trial (June 2020) and the WHO guidelines for corticosteroids (September 2020) and the temporal trends observed in corticosteroid use by region and to describe the geographic distribution of the recruitment in clinical trials that informed the WHO recommendation. Design, setting, and participants: This prospective cohort study of 434 851 patients was conducted between January 31, 2020, and September 2, 2022, in 63 countries worldwide. The data were collected under the auspices of the International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC)-WHO Clinical Characterisation Protocol for Severe Emerging Infections. Analyses were restricted to patients hospitalized for severe COVID-19 (a subset of the ISARIC data set). Exposure: Corticosteroid use as reported to the ISARIC-WHO Clinical Characterisation Protocol for Severe Emerging Infections. Main outcomes and measures: Number and percentage of patients hospitalized with severe COVID-19 who received corticosteroids by time period and by WHO geographic region. Results: Among 434 851 patients with confirmed severe or critical COVID-19 for whom receipt of corticosteroids could be ascertained (median [IQR] age, 61.0 [48.0-74.0] years; 53.0% male), 174 307 (40.1%) received corticosteroids during the study period. Of the participants in clinical trials that informed the guideline, 91.6% were recruited from the United Kingdom. In all regions, corticosteroid use for severe COVID-19 increased, but this increase corresponded to the timing of the RECOVERY trial (time-interruption coefficient 1.0 [95% CI, 0.9-1.2]) and WHO guideline (time-interruption coefficient 1.9 [95% CI, 1.7-2.0]) publications only in Europe. At the end of the study period, corticosteroid use for treatment of severe COVID-19 was highest in the Americas (5421 of 6095 [88.9%]; 95% CI, 87.7-90.2) and lowest in Africa (31 588 of 185 191 [17.1%]; 95% CI, 16.8-17.3). Conclusions and relevance: The results of this cohort study showed that implementation of the guidelines for use of corticosteroids in the treatment of severe COVID-19 varied geographically. Uptake of corticosteroid treatment was lower in regions with limited clinical trial involvement. Improving research diversity and representativeness may facilitate timely knowledge uptake and guideline implementation

    Characteristics and outcomes of COVID-19 patients admitted to hospital with and without respiratory symptoms

    No full text
    Background: COVID-19 is primarily known as a respiratory illness; however, many patients present to hospital without respiratory symptoms. The association between non-respiratory presentations of COVID-19 and outcomes remains unclear. We investigated risk factors and clinical outcomes in patients with no respiratory symptoms (NRS) and respiratory symptoms (RS) at hospital admission. Methods: This study describes clinical features, physiological parameters, and outcomes of hospitalised COVID-19 patients, stratified by the presence or absence of respiratory symptoms at hospital admission. RS patients had one or more of: cough, shortness of breath, sore throat, runny nose or wheezing; while NRS patients did not. Results: Of 178,640 patients in the study, 86.4&nbsp;% presented with RS, while 13.6&nbsp;% had NRS. NRS patients were older (median age: NRS: 74 vs RS: 65) and less likely to be admitted to the ICU (NRS: 36.7&nbsp;% vs RS: 37.5&nbsp;%). NRS patients had a higher crude in-hospital case-fatality ratio (NRS 41.1&nbsp;% vs. RS 32.0&nbsp;%), but a lower risk of death after adjusting for confounders (HR 0.88 [0.83-0.93]). Conclusion: Approximately one in seven COVID-19 patients presented at hospital admission without respiratory symptoms. These patients were older, had lower ICU admission rates, and had a lower risk of in-hospital mortality after adjusting for confounders
    corecore