32 research outputs found

    PhiXing-it, displaying foreign peptides on bacteriophage ΦX174

    Get PDF
    AbstractAlthough bacteriophage φX174 is easy to propagate and genetically tractable, it is use as a peptide display platform has not been explored. One region within the φX174 major spike protein G tolerated 13 of 16 assayed insertions, ranging from 10 to 75 amino acids. The recombinant proteins were functional and incorporated into infectious virions. In the folded protein, the peptides would be icosahedrally displayed within loops that extend from the protein׳s β-barrel core. The well-honed genetics of φX174 allowed permissive insertions to be quickly identified by the cellular phenotypes associated with cloned gene expression. The cloned genes were easily transferred from plasmids to phage genomes via recombination rescue. Direct ELISA validated several recombinant virions for epitope display. Some insertions conferred a temperature-sensitive (ts) protein folding defect, which was suppressed by global suppressors in protein G, located too far away from the insertion to directly alter peptide display

    Viral Adaptation to an Antiviral Protein Enhances the Fitness Level to Above That of the Uninhibited Wild Type

    Get PDF
    Viruses often evolve resistance to antiviral agents. While resistant strains are able to replicate in the presence of the agent, they generally exhibit lower fitness than the wild-type strain in the absence of the inhibitor. In some cases, resistant strains become dependent on the antiviral agent. However, the agent rarely, if ever, elevates dependent strain fitness above the uninhibited wild-type level. This would require an adaptive mechanism to convert the antiviral agent into a beneficial growth factor. Using an inhibitory scaffolding protein that specifically blocks X174 capsid assembly, we demonstrate that such mechanisms are possible. To obtain the quintuple-mutant resistant strain, the wild-type virus was propagated for approximately 150 viral life cycles in the presence of increasing concentrations of the inhibitory protein. The expression of the inhibitory protein elevated the strain's fitness significantly above the uninhibited wild-type level. Thus, selecting for resistance coselected for dependency, which was characterized and found to operate on the level of capsid nucleation. To the best of our knowledge, this is the first report of a virus evolving a mechanism to productively utilize an antiviral agent to stimulate its fitness above the uninhibited wild-type level. The results of this study may be predictive of the types of resistant phenotypes that could be selected by antiviral agents that specifically target capsid assembly. While viruses often acquire resistance to antiviral agents, resistance mutants generally exhibit lower fitness than the wildtype strain in the absence of the inhibitor Due to its rapid replication, bacteriophage X174 has become an attractive model system for evolutionary studies The inhibitory proteins most likely remove assembly intermediates by lowering the thermodynamic barriers that normally prevent off-pathway reactions (4, 5). Both off-pathway reactions and proper assembly involve D-D protein interactions across what will become the twofold axes of symmetry in the virion (8, 9). In the procapsid crystal structure, ␣-helix 3 of the D 2 , D 3 , and D 4 subunits mediates these interactions. Mutants resistant to the dominant lethal proteins were isolated in one-step genetic selections, and mutations mapped to either the coat or internal scaffolding proteins. These mutations may indirectly reinstate the avidity of the D protein electrostatic bonding partners required for productive morphogenesis (4, 5). However, the resistance phenotype is weak. To isolate a more robust phenotype, wild-type X174 was continually cultured through exponential phase cells expressing an inhibitory D protein. Results from this analysis indicate that the selection for resistance coselected for a level of dependence. The inhibitory protein stimulates resistant strain fitness significantly above the uninhibited wild-type level and appears to be required for efficient capsid nucleation. These results suggest that the virus evolved a mechanism to convert this potent antiviral agent into a beneficial factor and may be predictive of the types of resistant phenotypes that could be selected by antiviral agents that specifically target capsid assembly

    Microviridae

    No full text
    Members of the Microviridae comprise at least two subfamilies (Bullavirinae and Gokushovirinae), with divergent sequences from many uncultured representatives yet to be formally classified. Bullaviruses (canonical species φX174), which infect free-living bacteria, are among the fastest known replicating viruses. Gokushoviruses were originally thought to occupy a unique niche, infecting obligate intracellular bacteria; however, genomic analyses suggest that this group infects free-living hosts as well. Some gokushoviruses, unlike other members of the family, can undergo both lytic and lysogenic replication cycles. Microviridae contain small (4000–6000 bases), circular and single-stranded deoxyribonucleic acid (ssDNA) genomes of positive polarity, which are packaged inside small (∼25 nm diameter) T = 1 icosahedral capsids. The most well-known member of the Microviridae, φX174, has been fundamental in uncovering the mechanisms of DNA replication and capsid assembly and become a model system for experimental evolution. In contrast, little is known about the replication, structure and host range of gokushoviruses despite viromics indicating their ubiquity throughout the biosphere

    φX174 Genome-Capsid Interactions Influence the Biophysical Properties of the Virion: Evidence for a Scaffolding-Like Function for the Genome during the Final Stages of Morphogenesis

    No full text
    During the final stages of φX174 morphogenesis, there is an 8.5-Å radial collapse of coat proteins around the packaged genome, which is tethered to the capsid's inner surface by the DNA-binding protein. Two approaches were taken to determine whether protein-DNA interactions affect the properties of the mature virion and thus the final stages of morphogenesis. In the first approach, genome-capsid associations were altered with mutant DNA-binding proteins. The resulting particles differed from the wild-type virion in density, native gel migration, and host cell recognition. Differences in native gel migration were especially pronounced. However, no differences in protein stoichiometries were detected. An extragenic second-site suppressor of the mutant DNA-binding protein restores all assayed properties to near wild-type values. In the second approach, φX174 was packaged with foreign, single-stranded, covalently closed, circular DNA molecules identical in length to the φX174 genome. The resulting particles exhibited native gel migration rates that significantly differed from the wild type. The results of these experiments suggest that the structure of the genome and/or its association with the capsid's inner surface may perform a scaffolding-like function during the procapsid-to- virion transition

    Complete Virion Assembly with Scaffolding Proteins Altered in the Ability To Perform a Critical Conformational Switch▿

    No full text
    In the φX174 procapsid, 240 external scaffolding proteins form a nonquasiequivalent lattice. To achieve this arrangement, the four structurally unique subunits must undergo position-dependent conformational switches. One switch is mediated by glycine residue 61, which allows a 30° kink to form in α-helix 3 in two subunits, whereas the helix is straight in the other two subunits. No other amino acid should be able to produce a bend of this magnitude. Accordingly, all substitutions for G61 are nonviable but mutant proteins differ vis-à-vis recessive and dominant phenotypes. As previously reported, amino acid substitutions with side chains larger than valine confer dominant lethal phenotypes. Alone, these mutant proteins appear to have little or no biological activity but rather require the wild-type protein to interact with other structural proteins. Proteins with conservative substitutions for G61, serine and alanine, have now been characterized. Unlike the dominant lethal proteins, these proteins do not require wild-type subunits to interact with other viral proteins and cause assembly defects reminiscent of those conferred by the lethal dominant proteins in concert with wild-type subunits. Although atomic structures suggest that only a glycine residue can provide the proper torsion angle for assembly, mutants that can productively utilize the altered external scaffolding proteins were isolated, and the mutations were mapped to the coat and internal scaffolding proteins. Thus, the ability to isolate strains that could utilize the single mutant D protein species would not have been predicted from past structural analyses

    Characterization and Function of Putative Substrate Specificity Domain in Microvirus External Scaffolding Proteins▿

    No full text
    Microviruses (canonical members are bacteriophages φX174, G4, and α3) are T=1 icosahedral virions with an assembly pathway mediated by two scaffolding proteins. The external scaffolding protein D plays a major role during morphogenesis, particularly in icosahedral shell formation. The results of previous studies, conducted with a cloned chimeric external scaffolding gene, suggest that the first α-helix acts as a substrate specificity domain, perhaps mediating the initial coat-external scaffolding protein interaction. However, the expression of a cloned gene could lead to protein concentrations higher than those found in typical infections. Moreover, its induction before infection could alter the timing of the protein's accumulation. Both of these factors could drive or facilitate reactions that may not occur under physiological conditions or before programmed cell lysis. In order to elucidate a more detailed mechanistic model, a chimeric external scaffolding gene was placed directly in the φX174 genome under wild-type transcriptional and translational control, and the chimeric virus, which was not viable on the level of plaque formation, was characterized. The results of the genetic and biochemical analyses indicate that α-helix 1 most likely mediates the nucleation reaction for the formation of the first assembly intermediate containing the external scaffolding protein. Mutants that can more efficiently use the chimeric scaffolding protein were isolated. These second-site mutations appear to act on a kinetic level, shortening the lag phase before virion production, perhaps lowering the critical concentration of the chimeric protein required for a nucleation reaction

    Scaffolding Proteins Altered in the Ability To Perform a Conformational Switch Confer Dominant Lethal Assembly Defects▿

    No full text
    In the φX174 procapsid crystal structure, 240 external scaffolding protein D subunits form 60 pairs of asymmetric dimers, D1D2 and D3D4, in a non-quasi-equivalent structure. To achieve this arrangement, α-helix 3 assumes two different conformations: (i) kinked 30° at glycine residue 61 in subunits D1 and D3 and (ii) straight in subunits D2 and D4. Substitutions for G61 may inhibit viral assembly by preventing the protein from achieving its fully kinked conformation while still allowing it to interact with other scaffolding and structural proteins. Mutations designed to inhibit conformational switching in α-helix 3 were introduced into a cloned gene, and expression was demonstrated to inhibit wild-type morphogenesis. The severity of inhibition appears to be related to the size of the substituted amino acid. For infections in which only the mutant protein is present, morphogenesis does not proceed past the first step that requires the wild-type external scaffolding protein. Thus, mutant subunits alone appear to have little or no morphogenetic function. In contrast, assembly in the presence of wild-type and mutant subunits is blocked prematurely, before D protein is required in a wild-type infection, or channeled into an off-pathway reaction. These data suggest that the wild-type protein transports the inhibitory protein to the pathway. Viruses resistant to the lethal dominant proteins were isolated, and mutations were mapped to the coat and internal scaffolding proteins. The affected amino acids cluster in the atomic structure and may act to exclude mutant subunits from occupying particular positions atop pentamers of the viral coat protein
    corecore