10 research outputs found

    Current status and perspectives of immune-based therapies for hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is a frequent cancer with a high mortality. For early stage cancer there are potentially curative treatments including local ablation, resection and liver transplantation. However, for more advanced stage disease, there is no optimal treatment available. Even in the case of a "curative" treatment, recurrence or development of a new cancer in the precancerous liver is common. Thus, there is an urgent need for novel and effective (adjuvant) therapies to treat HCC and to prevent recurrence after local treatment in patients with HCC. The unique immune response in the liver favors tolerance, which remains a genuine challenge for conventional immunotherapy in patients with HCC. However, even in this "immunotolerant" organ, spontaneous immune responses against tumor antigens have been detected, although they are insufficient to achieve significant tumor death. Local ablation therapy leads to immunogenic tumor cell death by inducing the release of massive amounts of antigens, which enhances spontaneous immune response. New immune therapies such as dendritic cell vaccination and immune checkpoint inhibition are under investigation. Immunotherapy for cancer has made huge progress in the last few years and clinical trials examining the use of immunotherapy to treat hepatocellular carcinoma have shown some success. In this review, we discuss the current status of and offer some perspectives on immunotherapy for hepatocellular carcinoma, which could change disease progression in the near future

    Design of an optimized Wilms' tumor 1 (WT1) mRNA construct for enhanced WT1 expression and improved immunogenicity in vitro and in vivo

    Get PDF
    Tumor antigen-encoding mRNA for dendritic cell (DC)-based vaccination has gained increasing popularity in recent years. Within this context, two main strategies have entered the clinical trial stage: the use of mRNA for ex vivo antigen loading of DCs and the direct application of mRNA as a source of antigen for DCs in vivo. DCs transfected with mRNA-encoding Wilms' tumor 1 (WT1) protein have shown promising clinical results. Using a stepwise approach, we re-engineered a WT1 cDNA-carrying transcription vector to improve the translational characteristics and immunogenicity of the transcribed mRNA. Different modifications were performed: (i) the WT1 sequence was flanked by the lysosomal targeting sequence of dendritic cell lysosomal-associated membrane protein to enhance cytoplasmic expression; (ii) the nuclear localization sequence (NLS) of WT1 was deleted to promote shuttling from the nucleus to the cytoplasm; (iii) the WT1 DNA sequence was optimized in silico to improve translational efficiency; and (iv) this WT1 sequence was cloned into an optimized RNA transcription vector. DCs electroporated with this optimized mRNA showed an improved ability to stimulate WT1-specific T-cell immunity. Furthermore, in a murine model, we were able to show the safety, immunogenicity, and therapeutic activity of this optimized mRNA. This work is relevant for the future development of improved mRNA-based vaccine strategies K

    Characterization of CD8+ T-Cell Responses in the Peripheral Blood and Skin Injection Sites of Melanoma Patients Treated with mRNA Electroporated Autologous Dendritic Cells (TriMixDC-MEL)

    Get PDF
    Treatment of melanoma patients with mRNA electroporated dendritic cells (TriMixDC-MEL) stimulates T-cell responses against the presented tumor-associated antigens (TAAs). In the current clinical trials, melanoma patients with systemic metastases are treated, requiring priming and/or expansion of preexisting TAA-specific T cells that are able to migrate to both the skin and internal organs. We monitored the presence of TAA-specific CD8+ T cells infiltrating the skin at sites of intradermal TriMixDC-MEL injection (SKILs) and within the circulation of melanoma patients treated in two clinical trials. In 10 out of fourteen (71%) patients screened, CD8+ T cells recognizing any of the four TAA presented by TriMixDC-MEL cellular vaccine were found in both compartments. In total, 30 TAA-specific T-cell responses were detected among the SKILs and 29 among peripheral blood T cells, of which 24 in common. A detailed characterization of the antigen specificity of CD8+ T-cell populations in four patients indicates that the majority of the epitopes detected were only recognized by CD8+ T cells derived from either skin biopsies or peripheral blood, indicating that some compartmentalization occurs after TriMix-DC therapy. To conclude, functional TAA-specific CD8+ T cells distribute both to the skin and peripheral blood of patients after TriMixDC-MEL therapy

    Priming of cytotoxic T lymphocyte responses by dendritic cells: induction of potent anti-tumor immune responses

    No full text
    It is well established that CD8+ cytotoxic T lymphocytes (CTLs) play a major role in eradicating tumor cells. The path from naive CD8+ T cell to effector CD8+ T cell is guided by antigen presenting cells, such as dendritic cells (DCs) that start a developmental program in the CD8+ T cells through the delivery of MHC/peptide complexes, co-stimulatory and pro-inflammatory signals. These signals determine the magnitude of the ensuing response and the ability of the CD8+ CTLs to successfully complete their quest, eradicating tumor cells whilst conquering enemies, such as immunosuppressive regulatory T cells (Tregs). In this chapter, we discuss the role of DCs and of the signals critical for effector CD8+ T cell differentiation, and how the differences in the nature of these signals contribute to the diversity of CD8+ T cell responses

    Preclinical evaluation of TriMix and antigen mRNA-based anti-tumor therapy

    No full text
    The use of tumor-associated antigen (TAA) mRNA for therapeutic purposes is under active investigation. To be effective, mRNA vaccines need to deliver activation stimuli in addition to TAAs to dendritic cells (DC). In this study, we evaluated whether intranodal delivery of TAA mRNA together with TriMix, a mix of mRNA encoding CD40 ligand, constitutive active Toll-like receptor 4 and CD70, results in the in situ modification and maturation of DCs, hence, priming of TAA-specific T cells. We showed selective uptake and translation of mRNA in vivo by lymph node resident CD11c(+) cells. This process was hampered by codelivery of classical maturation stimuli but not by TriMix mRNA. Importantly, TriMix mRNA induced a T-cell-attracting and stimulatory environment, including recruitment of antigen-specific CD4(+) and CD8(+) T cells and CTLs against various TAAs. In several mouse tumor models, mRNA vaccination was as efficient in CTL induction and therapy response as vaccination with mRNA-electroporated DCs. Together, our findings suggest that intranodal administration of TAA mRNA together with mRNA encoding immunomodulating molecules is a promising vaccination strategy

    Dendritic cells loaded with mRNA encoding full-length tumor antigens prime CD4+ and CD8+ T cells in melanoma patients.

    No full text
    It is generally thought that dendritic cells (DCs) loaded with full-length tumor antigen could improve immunotherapy by stimulating broad T-cell responses and by allowing treatment irrespective of the patient's human leukocyte antigen (HLA) type. To investigate this, we determined the specificity of T cells from melanoma patients treated with DCs loaded with mRNA encoding a full-length tumor antigen fused to a signal peptide and an HLA class II sorting signal, allowing presentation in HLA class I and II. In delayed-type hypersensitive (DTH)-biopsies and blood, we found functional CD8(+) and CD4(+) T cells recognizing novel treatment-antigen-derived epitopes, presented by several HLA types. Additionally, we identified a CD8(+) response specific for the signal peptide incorporated to elicit presentation by HLA class II and a CD4(+) response specific for the fusion region of the signal peptide and one of the antigens. This demonstrates that the fusion proteins contain newly created immunogenic sequences and provides evidence that ex vivo-generated mRNA-modified DCs can induce effector CD8(+) and CD4(+) T cells from the naive T-cell repertoire of melanoma patients. Thus, this work provides definitive proof that DCs presenting the full antigenic spectrum of tumor antigens can induce T cells specific for novel epitopes and can be administered to patients irrespective of their HLA type

    Intratumoral delivery of TriMix mRNA results in T-cell activation by cross-presenting dendritic cells.

    No full text
    Modulating the activity of tumor-infiltrating dendritic cells (TiDCs) provides opportunities for novel cancer interventions. In this study, we report on the uptake of mRNA by CD8α+ cross-presenting TiDCs upon its intratumoral (IT) delivery. We exploited this property to deliver mRNA encoding the co-stimulatory molecule CD70, the activation stimuli CD40 ligand, and constitutively active Toll-like receptor 4, referred to as TriMix mRNA. We show that TiDCs are reprogrammed to mature antigen-presenting cells that migrate to tumor-draining lymph nodes (TDLNs). TriMix stimulated antitumor T-cell responses to spontaneously engulfed cancer antigens, including a neoepitope. We showed in various mouse cancer models that IT delivery of TriMix mRNA results in systemic therapeutic antitumor immunity. Finally, we showed that the induction of antitumor responses critically depends on TiDCs, whereas it only partially depends on TDLNs. As such we provide a platform and a mechanistic rationale for the clinical testing of IT administration of TriMix mRNA.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore