48 research outputs found

    Foetal oestrogens and autism

    Get PDF
    Funder: Autism Research Trust (ART), RG72423Funder: Peterhouse Research Studentship, Reference: PS2017-8 / at768Funder: University of Cambridge | Trinity College, University of Cambridge; doi: https://doi.org/10.13039/501100000727Abstract: Elevated latent prenatal steroidogenic activity has been found in the amniotic fluid of autistic boys, based on measuring prenatal androgens and other steroid hormones. To date, it is unclear if other prenatal steroids also contribute to autism likelihood. Prenatal oestrogens need to be investigated, as they play a key role in synaptogenesis and corticogenesis during prenatal development, in both males and females. Here we test whether levels of prenatal oestriol, oestradiol, oestrone and oestrone sulphate in amniotic fluid are associated with autism, in the same Danish Historic Birth Cohort, in which prenatal androgens were measured, using univariate logistic regression (n = 98 cases, n = 177 controls). We also make a like-to-like comparison between the prenatal oestrogens and androgens. Oestradiol, oestrone, oestriol and progesterone each related to autism in univariate analyses after correction with false discovery rate. A comparison of standardised odds ratios showed that oestradiol, oestrone and progesterone had the largest effects on autism likelihood. These results for the first time show that prenatal oestrogens contribute to autism likelihood, extending the finding of elevated prenatal steroidogenic activity in autism. This likely affects sexual differentiation, brain development and function

    Genome-wide scans using archived neonatal dried blood spot samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identification of disease susceptible genes requires access to DNA from numerous well-characterised subjects. Archived residual dried blood spot samples from national newborn screening programs may provide DNA from entire populations and medical registries the corresponding clinical information. The amount of DNA available in these samples is however rarely sufficient for reliable genome-wide scans, and whole-genome amplification may thus be necessary. This study assess the quality of DNA obtained from different amplification protocols by evaluating fidelity and robustness of the genotyping of 610,000 single nucleotide polymorphisms, using the Illumina Infinium HD Human610-Quad BeadChip. Whole-genome amplified DNA from 24 neonatal dried blood spot samples stored between 15 to 25 years was tested, and high-quality genomic DNA from 8 of the same individuals was used as reference.</p> <p>Results</p> <p>Using 3.2 mm disks from dried blood spot samples the optimal DNA-extraction and amplification protocol resulted in call-rates between 99.15% – 99.73% (mean 99.56%, N = 16), and conflicts with reference DNA in only three per 10,000 genotype calls.</p> <p>Conclusion</p> <p>Whole-genome amplified DNA from archived neonatal dried blood spot samples can be used for reliable genome-wide scans and is a cost-efficient alternative to collecting new samples.</p

    Perfluorooctane sulfonate concentrations in amniotic fluid, biomarkers of fetal Leydig cell function, and cryptorchidism and hypospadias in Danish boys (1980–1996)

    Get PDF
    Background: Exposure to perfluorooctane sulfonate (PFOS) may potentially disturb fetal Leydig cell hormone production and male genital development. Objectives: We aimed to study the associations between levels of amniotic fluid PFOS, fetal steroid hormone, and insulin-like factor 3 (INSL3) and the prevalence of cryptorchidism and hypospadias. Methods: Using the Danish National Patient Registry, we selected 270 cryptorchidism cases,75 hypospadias cases, and 300 controls with stored maternal amniotic fluid samples available in a Danish pregnancy-screening biobank (1980–1996). We used mass spectrometry to measure PFOS in amniotic fluid from 645 persons and steroid hormones in samples from 545 persons. INSL3 was measured by immunoassay from 475 persons. Associations between PFOS concentration in amniotic fluid, hormone levels, and genital malformations were assessed by confounder-adjusted linear and logistic regression. Results: The highest tertile of PFOS exposure (> 1.4 ng/mL) in amniotic fluid was associated with a 40% (95% CI: –69, –11%) lower INSL3 level and an 18% (95% CI: 7, 29%) higher testosterone level compared with the lowest tertile (< 0.8 ng/mL). Amniotic fluid PFOS concentration was not associated with cryptorchidism or hypospadias. Conclusions: Environmental PFOS exposure was associated with steroid hormone and INSL3 concentrations in amniotic fluid, but was not associated with cryptorchidism or hypospadias in our study population. Additional studies are needed to determine whether associations with fetal hormone levels may have long-term implications for reproductive health

    Robustness of genome-wide scanning using archived dried blood spot samples as a DNA source

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The search to identify disease-susceptible genes requires access to biological material from numerous well-characterized subjects. Archived residual dried blood spot (DBS) samples, also known as Guthrie cards, from national newborn screening programs may provide a DNA source for entire populations. Combined with clinical information from medical registries, DBS samples could provide a rich source for productive research. However, the amounts of DNA which can be extracted from these precious samples are minute and may be prohibitive for numerous genotypings. Previously, we demonstrated that DBS DNA can be whole-genome amplified and used for reliable genetic analysis on different platforms, including genome-wide scanning arrays. However, it remains unclear whether this approach is workable on a large sample scale. We examined the robustness of using DBS samples for whole-genome amplification following genome-wide scanning, using arrays from Illumina and Affymetrix.</p> <p>Results</p> <p>This study is based on 4,641 DBS samples from the Danish Newborn Screening Biobank, extracted for three separate genome-wide association studies. The amount of amplified DNA was significantly (P < 0.05) affected by the year of storage and storage conditions. Nine (0.2%) DBS samples failed whole-genome amplification. A total of 4,586 (98.8%) samples met our criterion of success of a genetic call-rate above 97%. The three studies used different arrays, with mean genotyping call-rates of 99.385% (Illumina Infinium Human610-Quad), 99.722% (Illumina Infinium HD HumanOmni1-Quad), and 99.206% (Affymetrix Axiom Genome-Wide CEU). We observed a concordance rate of 99.997% in the 38 methodological replications, and 99.999% in the 27 technical replications. Handling variables such as time of storage, storage conditions and type of filter paper were shown too significantly (P < 0.05) affect the genotype call-rates in some of the arrays, although the effect was minimal.</p> <p>Conclusion</p> <p>Our study indicates that archived DBS samples from the Danish Newborn Screening Biobank represent a reliable resource of DNA for whole-genome amplification and subsequent genome-wide association studies. With call-rates equivalent to high quality DNA samples, our results point to new opportunities for using the neonatal biobanks available worldwide in the hunt for genetic components of disease.</p
    corecore