1,682 research outputs found
A systematic review of the effect of footwear, foot orthoses and taping on lower limb muscle activity during walking and running
Background:
External devices are used to manage musculoskeletal pathologies by altering loading of the foot, which could result in altered muscle activity that could have therapeutic benefits.
Objectives:
To establish if evidence exists that footwear, foot orthoses and taping alter lower limb muscle activity during walking and running.
Study design:
Systematic literature review.
Methods:
CINAHL, MEDLINE, ScienceDirect, SPORTDiscus and Web of Science databases were searched. Quality assessment was performed using guidelines for assessing healthcare interventions and electromyography methodology.
Results:
Thirty-one studies were included: 22 related to footwear, eight foot orthoses and one taping. In walking, (1) rocker footwear apparently decreases tibialis anterior activity and increases triceps surae activity, (2) orthoses could decrease activity of tibialis posterior and increase activity of peroneus longus and (3) other footwear and taping effects are unclear.
Conclusion:
Modifications in shoe or orthosis design in the sagittal or frontal plane can alter activation in walking of muscles acting primarily in these planes. Adequately powered research with kinematic and kinetic data is needed to explain the presence/absence of changes in muscle activation with external devices.
Clinical relevance:
This review provides some evidence that foot orthoses can reduce tibialis posterior activity, potentially benefitting specific musculoskeletal pathologies
Location-specific cutaneous electrical stimulation of the footsole modulates corticospinal excitability to the plantarflexors and dorsiflexors during standing
Non-noxious electrical stimulation to distinct locations of the foot sole evokes location-specific cutaneous reflex responses in lower limb muscles. These reflexes occur at latencies that may enable them to be mediated via a transcortical pathway. Corticospinal excitability to the plantarflexors and dorsiflexors was measured in 16 participants using motor evoked potentials (MEPs). Spinal excitability was measured in eight of the original participants using cervicomedullary motor evoked potentials (CMEPs). Measurements were collected with and without preceding cutaneous stimulus to either the heel (HEEL) or metatarsal (MET) locations of the foot sole, and evoked potentials were elicited to coincide with the arrival of the cutaneous volley at either the motor cortex or spinal cord. Plantarflexor MEPs and CMEPs were facilitated with cutaneous stimulation to the HEEL for MEPs (soleus p = 0.04, medial gastrocnemius (MG) p = 0.017) and CMEPs (soleus p = 0.047 and MG p = 0.015), but they were unchanged following MET stimulation for MEPs or CMEPs. Dorsiflexor MEPs were unchanged with cutaneous stimulation at either location, but dorsiflexor CMEPs increased with cutaneous stimulation (p = 0.05). In general, the increase in CMEP amplitudes was larger than the increase in MEP amplitudes, indicating that an increase in spinal excitability likely explains most of the increase in corticospinal excitability. The larger change observed in the CMEP also indicates that excitability from supraspinal sources likely decreased, which could be due to a net change in the excitability of intracortical circuits. This study provides evidence that cutaneous reflexes from foot sole skin are likely influenced by a transcortical pathway
A nematode demographics assay in transgenic roots reveals no significant impacts of the Rhg1 locus LRR-Kinase on soybean cyst nematode resistance
<p>Abstract</p> <p>Background</p> <p>Soybean cyst nematode (<it>Heterodera glycines</it>, SCN) is the most economically damaging pathogen of soybean (<it>Glycine max</it>) in the U.S. The <it>Rhg1 </it>locus is repeatedly observed as the quantitative trait locus with the greatest impact on SCN resistance. The Glyma18g02680.1 gene at the <it>Rhg1 </it>locus that encodes an apparent leucine-rich repeat transmembrane receptor-kinase (LRR-kinase) has been proposed to be the SCN resistance gene, but its function has not been confirmed. Generation of fertile transgenic soybean lines is difficult but methods have been published that test SCN resistance in transgenic roots generated with <it>Agrobacterium rhizogenes</it>.</p> <p>Results</p> <p>We report use of artificial microRNA (amiRNA) for gene silencing in soybean, refinements to transgenic root SCN resistance assays, and functional tests of the <it>Rhg1 </it>locus LRR-kinase gene. A nematode demographics assay monitored infecting nematode populations for their progress through developmental stages two weeks after inoculation, as a metric for SCN resistance. Significant differences were observed between resistant and susceptible control genotypes. Introduction of the <it>Rhg1 </it>locus LRR-kinase gene (genomic promoter/coding region/terminator; Peking/PI 437654-derived SCN-resistant source), into <it>rhg1</it><sup>- </sup>SCN-susceptible plant lines carrying the resistant-source <it>Rhg4</it><sup><it>+ </it></sup>locus, provided no significant increases in SCN resistance. Use of amiRNA to reduce expression of the LRR-kinase gene from the <it>Rhg1 </it>locus of Fayette (PI 88788 source of <it>Rhg1</it>) also did not detectably alter resistance to SCN. However, silencing of the LRR-kinase gene did have impacts on root development.</p> <p>Conclusion</p> <p>The nematode demographics assay can expedite testing of transgenic roots for SCN resistance. amiRNAs and the pSM103 vector that drives interchangeable amiRNA constructs through a soybean polyubiqutin promoter (Gmubi), with an intron-GFP marker for detection of transgenic roots, may have widespread use in legume biology. Studies in which expression of the <it>Rhg1 </it>locus LRR-kinase gene from different resistance sources was either reduced or complemented did not reveal significant impacts on SCN resistance.</p
An international consensus definition for contextual factors: findings from a nominal group technique
Objective: Emerging literature suggests contextual factors are important components of therapeutic encounters and may substantially influence clinical outcomes of a treatment intervention. At present, a single consensus definition of contextual factors, which is universal across all health-related conditions is lacking. The objective of this study was to create a consensus definition of contextual factors to better refine this concept for clinicians and researchers. Design: The study used a multi-stage virtual Nominal Group Technique (vNGT) to create and rank contextual factor definitions. Nominal group techniques are a form of consensus-based research, and are beneficial for identifying problems, exploring solutions and establishing priorities. Setting: International. Main outcome measures: The initial stages of the vNGT resulted in the creation of 14 independent contextual factor definitions. After a prolonged discussion period, the initial definitions were heavily modified, and 12 final definitions were rank ordered by the vNGT participants from first to last. Participants: The 10 international vNGT participants had a variety of clinical backgrounds and research specializations and were all specialists in contextual factors research. Results: A sixth round was used to identify a final consensus, which reflected the complexity of contextual factors and included three primary domains: (1) an overall definition; (2) qualifiers that serve as examples of the key areas of the definition; and (3) how contextual factors may influence clinical outcomes. Conclusion: Our consensus definition of contextual factors seeks to improve the understanding and communication between clinicians and researchers. These are especially important in recognizing their potential role in moderating and/or mediating clinical outcomes
- …