2,413 research outputs found

    Generation of folk song melodies using Bayes transforms

    Get PDF
    The paper introduces the `Bayes transform', a mathematical procedure for putting data into a hierarchical representation. Applicable to any type of data, the procedure yields interesting results when applied to sequences. In this case, the representation obtained implicitly models the repetition hierarchy of the source. There are then natural applications to music. Derivation of Bayes transforms can be the means of determining the repetition hierarchy of note sequences (melodies) in an empirical and domain-general way. The paper investigates application of this approach to Folk Song, examining the results that can be obtained by treating such transforms as generative models

    The Effect of Multidisciplinary Lifestyle Intervention on the Pre- and Postprandial Plasma Gut Peptide Concentrations in Children with Obesity

    Get PDF
    Objective. This study aims to evaluate the effect of a multidisciplinary treatment of obesity on plasma concentrations of several gut hormones in fasting condition and in response to a mixed meal in children. Methods. Complete data were available from 36 obese children (age 13.3 ± 2.0 yr). At baseline and after the 3-month multidisciplinary treatment, fasting and postprandial blood samples were taken for glucose, insulin, ghrelin, peptide YY (PYY), and glucagon-like peptide 1 (GLP-1). Results. BMI-SDS was significantly reduced by multidisciplinary treatment (from 4.2 ± 0.7 to 4.0 ± 0.9, P < .01). The intervention significantly increased the area under the curve (AUC) of ghrelin (from 92.3 ± 18.3 to 97.9 ± 18.2 pg/L, P < .01), but no significant changes were found for PYY or GLP-1 concentrations (in fasting or postprandial condition). The insulin resistance index (HOMA-IR) remained unchanged as well. Conclusion. Intensive multidisciplinary treatment induced moderate weight loss and increased ghrelin secretion, but serum PYY and GLP-1 concentrations and insulin sensitivity remained unchanged

    Spin tunnelling in mesoscopic systems

    Full text link
    We study spin tunnelling in molecular magnets as an instance of a mesoscopic phenomenon, with special emphasis on the molecule Fe8. We show that the tunnel splitting between various pairs of Zeeman levels in this molecule oscillates as a function of applied magnetic field, vanishing completely at special points in the space of magnetic fields, known as diabolical points. This phenomena is explained in terms of two approaches, one based on spin-coherent-state path integrals, and the other on a generalization of the phase integral (or WKB) method to difference equations. Explicit formulas for the diabolical points are obtained for a model Hamiltonian.Comment: 13 pages, 5 figures, uses Pramana style files; conference proceedings articl

    Active flow control systems architectures for civil transport aircraft

    Get PDF
    Copyright @ 2010 American Institute of Aeronautics and AstronauticsThis paper considers the effect of choice of actuator technology and associated power systems architecture on the mass cost and power consumption of implementing active flow control systems on civil transport aircraft. The research method is based on the use of a mass model that includes a mass due to systems hardware and a mass due to the system energy usage. An Airbus A320 aircraft wing is used as a case-study application. The mass model parameters are based on first-principle physical analysis of electric and pneumatic power systems combined with empirical data on system hardware from existing equipment suppliers. Flow control methods include direct fluidic, electromechanical-fluidic, and electrofluidic actuator technologies. The mass cost of electrical power distribution is shown to be considerably less than that for pneumatic systems; however, this advantage is reduced by the requirement for relatively heavy electrical power management and conversion systems. A tradeoff exists between system power efficiency and the system hardware mass required to achieve this efficiency. For short-duration operation the flow control solution is driven toward lighter but less power-efficient systems, whereas for long-duration operation there is benefit in considering heavier but more efficient systems. It is estimated that a practical electromechanical-fluidic system for flow separation control may have a mass up to 40% of the slat mass for a leading-edge application and 5% of flap mass for a trailing-edge application.This work is funded by the Sixth European Union Framework Programme as part of the AVERT project (Contract No. AST5-CT-2006-030914

    Certainty Closure: Reliable Constraint Reasoning with Incomplete or Erroneous Data

    Full text link
    Constraint Programming (CP) has proved an effective paradigm to model and solve difficult combinatorial satisfaction and optimisation problems from disparate domains. Many such problems arising from the commercial world are permeated by data uncertainty. Existing CP approaches that accommodate uncertainty are less suited to uncertainty arising due to incomplete and erroneous data, because they do not build reliable models and solutions guaranteed to address the user's genuine problem as she perceives it. Other fields such as reliable computation offer combinations of models and associated methods to handle these types of uncertain data, but lack an expressive framework characterising the resolution methodology independently of the model. We present a unifying framework that extends the CP formalism in both model and solutions, to tackle ill-defined combinatorial problems with incomplete or erroneous data. The certainty closure framework brings together modelling and solving methodologies from different fields into the CP paradigm to provide reliable and efficient approches for uncertain constraint problems. We demonstrate the applicability of the framework on a case study in network diagnosis. We define resolution forms that give generic templates, and their associated operational semantics, to derive practical solution methods for reliable solutions.Comment: Revised versio

    Tracing back multi-resistant Salmonella typhimurium DTI04 from pork at the slaughterhouse to a specific swine herd by strategical use of serology and culture

    Get PDF
    Multi-resistant Salmonella typhimurium DTI04 (DT104) was first isolated from Danish livestock in 1996. DTI 04 is now known as an important and emerging pathogen in many countries. In Denmark, multi-resistant Salmonella typhimurium DT 104 is officially declared an unwanted bacteria in any food. Consequently, when DT 104 is detected in pork at a Danish slaugtherhouse, all carcasses from the day of slaugther in question must be heat treated. In order to find DT I 04 infected swine herds, a mandatory tracing back procedure is performed by strategical use of serology and culture

    The immediate effects of foot orthosis geometry on lower limb muscle activity and foot biomechanics

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordFoot orthoses (FOs) are used to treat clinical conditions by altering the external forces applied to the foot and thereafter the forces of muscles and tendons. However, whether specific geometric design features of FOs affect muscle activation is unknown. The aim of this study was to investigate if medial heel wedging and increased medial arch height have different effects on the electromyography (EMG) amplitude of tibialis posterior, other muscles of the lower limb and the kinematics and kinetics at the rearfoot and ankle. Healthy participants (n = 19) walked in standardised shoes with i) a flat inlay; ii) a standard shape FOs, iii) standard FOs adjusted to incorporate a 6 mm increase in arch height, iv) and standard FOs adjusted to incorporate an 8° medial heel wedging and v) both the 6 mm increase in arch height and 8° increase in medial wedging. EMG was recorded from medial gastrocnemius, peroneus longus, tibialis anterior and in-dwelling tibialis posterior muscles. Motion and ground reaction force data were collected concurrently. Tibialis posterior EMG amplitude reduced in early stance with all FOs (ηp2 = 0.23-1.16). Tibialis posterior EMG amplitude and external ankle eversion moment significantly reduced with FOs incorporating medial wedging. The concurrent reduction in external eversion moment and peak TP EMG amplitude in early stance with medial heel wedging demonstrates the potential for this specific FOs geometric feature to alter TP activation. Medial wedged FOs could facilitate tendon healing in tibialis posterior tendon dysfunction by reducing force going through the TP muscle tendon unit
    corecore