9,042 research outputs found
Controlled photon transfer between two individual nanoemitters via shared high-Q modes of a microsphere resonator
We realize controlled cavity-mediated photon transfer between two single
nanoparticles over a distance of several tens of micrometers. First, we show
how a single nanoscopic emitter attached to a near-field probe can be coupled
to high-Q whispering-gallery modes of a silica microsphere at will. Then we
demonstrate transfer of energy between this and a second nanoparticle deposited
on the sphere surface. We estimate the photon transfer efficiency to be about
six orders of magnitude higher than that via free space propagation at
comparable separations.Comment: accepted for publication in Nano Letter
Recommended from our members
Radiofrequency superconductivity applied to free-electron lasers
Low wall losses and low wakefields inherent in superconducting radiofrequency (srf) cavities make them attractive candidates for accelerators that operate efficiently at high continuous-wave (cw) gradients. Such accelerators are desirable for free-electron lasers (FELs) that extract high-power cw light from a high-average-current electron beam, or that produce ultrashort-wavelength light from a high-energy electron beam. Efficiency is a prime consideration in the former case, while high electron-beam quality is a prime consideration in the latter case. This paper summarizes the status of FEL projects involving srf accelerators. It also introduces Jefferson Lab`s srf FEL and surveys its design because it is a new machine, with commissioning having commenced in October 1997. Once commissioning is complete, this FEL should produce tunable, cw, kW-level light at 3-6 {mu}m wavelength
Driver Accelerator Design for the 10 kW Upgrade of the Jefferson Lab IR FEL
An upgrade of the Jefferson Lab IR FEL is now under construction. It will
provide 10 kW output light power in a wavelength range of 2-10 microns. The FEL
will be driven by a modest-sized 80-210 MeV, 10 mA energy-recovering
superconducting RF (SRF) linac. Stringent phase space requirements at the
wiggler, low beam energy, and high beam current subject the design to numerous
constraints. These are imposed by the need for both transverse and longitudinal
phase space management, the potential impact of collective phenomena (space
charge, wakefields, beam break-up (BBU), and coherent synchrotron radiation
(CSR)), and interactions between the FEL and the accelerator RF system. This
report addresses these issues and presents an accelerator design solution
meeting the requirements imposed by physical phenomena and operational
necessities.Comment: submission THC03 for LINAC200
Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light
We present experiments where a single subwavelength scatterer is used to
examine and control the back-scattering induced coupling between
counterpropagating high-Q modes of a microsphere resonator. Our measurements
reveal the standing wave character of the resulting symmetric and antisymmetric
eigenmodes, their unbalanced intensity distributions, and the coherent nature
of their coupling. We discuss our findings and the underlying classical physics
in the framework common to quantum optics and provide a particularly intuitive
explanation of the central processes.Comment: accepted for publication in Pysical Review Letter
Evolution of the Velocity Ellipsoids in the Thin Disk of the Galaxy and the Radial Migration of Stars
Data from the revised Geneva--Copenhagen catalog are used to study the
influence of radial migration of stars on the age dependences of parameters of
the velocity ellipsoids for nearby stars in the thin disk of the Galaxy,
assuming that the mean radii of the stellar orbits remain constant. It is
demonstrated that precisely the radial migration of stars, together with the
negative metallicity gradient in the thin disk,are responsible for the observed
negative correlation between the metallicities and angular momenta of nearby
stars, while the angular momenta of stars that were born at the same
Galactocentric distances do not depend on either age or metallicity. (abridged)Comment: Astronomy Reports, Vol. 86 No. 9, P.1117-1126 (2009
Two-Species Annihilation with Drift: A Model with Continuous Concentration-Decay Exponents
We propose a model for diffusion-limited annihilation of two species, or , where the motion of the particles is subject to a drift. For equal
initial concentrations of the two species, the density follows a power-law
decay for large times. However, the decay exponent varies continuously as a
function of the probability of which particle, the hopping one or the target,
survives in the reaction. These results suggest that diffusion-limited
reactions subject to drift do not fall into a limited number of universality
classes.Comment: 10 pages, tex, 3 figures, also available upon reques
Bosons in a Lattice: Exciton-Phonon Condensate in Cu2O
We explore a nonlinear field model to describe the interplay between the
ability of excitons to be Bose-condensed and their interaction with other modes
of a crystal. We apply our consideration to the long-living para-excitons in
Cu2O. Taking into account the exciton-phonon interaction and introducing a
coherent phonon part of the moving condensate, we derive the dynamic equations
for the exciton-phonon condensate. These equations can support localized
solutions, and we discuss the conditions for the moving inhomogeneous
condensate to appear in the crystal. We calculate the condensate wave function
and energy, and a collective excitation spectrum in the semiclassical
approximation; the inside-excitations were found to follow the asymptotic
behavior of the macroscopic wave function exactly. The stability conditions of
the moving condensate are analyzed by use of Landau arguments, and Landau
critical parameters appear in the theory. Finally, we apply our model to
describe the recently observed interference and strong nonlinear interaction
between two coherent exciton-phonon packets in Cu2O.Comment: 34 pages, LaTeX, four figures (.ps) are incorporated by epsf.
Submitted to Phys. Rev.
Optimal Principal Component Analysis in Distributed and Streaming Models
We study the Principal Component Analysis (PCA) problem in the distributed
and streaming models of computation. Given a matrix a
rank parameter , and an accuracy parameter , we
want to output an orthonormal matrix for which where is the best rank- approximation to .
This paper provides improved algorithms for distributed PCA and streaming
PCA.Comment: STOC2016 full versio
Cigarette smoking and risk of acoustic neuromas and pituitary tumours in the Million Women Study
BACKGROUND: The relationship between cigarette smoking and incidence of acoustic neuromas and pituitary tumours is uncertain. METHODS: We examined the relation between smoking and risk of acoustic neuromas and pituitary tumours in a prospective study of 1.2 million middle-aged women in the United Kingdom. RESULTS: Over 10.2 million person years of follow-up, 177 women were diagnosed with acoustic neuromas and 174 with pituitary tumours. Current smokers at recruitment were at significantly reduced risk of incident acoustic neuroma compared with never smokers (adjusted relative risk (RR)=0.41, 95% confidence interval (CI)=0.24-0.70, P=0.001). Past smokers did not have significantly different risk of acoustic neuroma than never smokers (RR=0.87, 95% CI=0.62-1.22, P=0.4). Smoking was not associated with incidence of pituitary tumours (RR in current vs never smokers=0.91, 95% CI=0.60-1.40, P=0.7). CONCLUSION: Women who smoke are at a significantly reduced risk of acoustic neuromas, but not of pituitary tumours, compared with never smokers. Acoustic neuromas are much rarer than the cancers that are increased among smokers
- …