1,566 research outputs found

    Technological development and innovation : selected policy implications

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and, (S.M. in Technology and Policy)--Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 59-62).Technological development is one of the main drivers in economic progress throughout the world and is strongly linked to the creation of new industries, jobs, and wealth. This thesis attempts to better understand how a specific technological field develops over time and to examine the policy implications resulting from that research. In order to research the specific field, we present a repeatable method to identify and describe the important innovations in an industry, using the solar photovoltaic industry as a case study. A set of 2484 patented inventions in the solar PV industry between 1961 and 2011 was selected and their metadata and textual information were analyzed using a mixture of qualitative, quantitative and objective tests. Within the patent set, a group of most highly cited patents was located and defined. We found that these highly cited patents improved on technologies across different technological hierarchy levels and that the hierarchy levels did not appear to follow any pattern over time. When compared with other patents in the set of 2484, the highly cited patents, contrary to some conjectures, did not apparently rely more on new scientific discoveries as they did not cite scientific literature more frequently than less cited patents. These findings support the theory that even the most important developments in a field are part of an integrated system and cannot be treated as standalone improvements. The work also indicates that ascribing the bulk of progress to "breakthroughs" is not seen in objective data. The thesis continues with an analysis of how these findings may apply to innovation polices in organizations. Finally, technological innovation strategies within MIT, Stanford and the United States Air Force are analyzed through the lens of the model constructed from the findings.by Christopher L Benson.S.M.in Technology and PolicyS.M

    Quantitative Determination of Technological Improvement from Patent Data

    Get PDF
    The results in this paper establish that information contained in patents in a technological domain is strongly correlated with the rate of technological progress in that domain. The importance of patents in a domain, the recency of patents in a domain and the immediacy of patents in a domain are all strongly correlated with increases in the rate of performance improvement in the domain of interest. A patent metric that combines both importance and immediacy is not only highly correlated (r = 0.76, p = 2.6*10[superscript -6]) with the performance improvement rate but the correlation is also very robust to domain selection and appears to have good predictive power for more than ten years into the future. Linear regressions with all three causal concepts indicate realistic value in practical use to estimate the important performance improvement rate of a technological domain.Singapore University of Technology and Desig

    Technology Structural Implications from the Extension of a Patent Search Method

    Get PDF
    Many areas of academic and industrial work make use of the notion of a ‘technology’. This paper attempts to reduce the ambiguity around the definition of what constitutes a ‘technology’ by extension of a method described previously that finds highly relevant patent sets for specified technological fields. The method relies on a less ambiguous definition that includes both a functional component and a component consisting of the underlying knowledge in a technological field to form a two-component definition. These two components form a useful definition of a technology that allows for objective, repeatable and thus comparable analysis of specific technologies. 28 technological domains are investigated: the extension of an earlier technique is shown to be capable of finding highly relevant and complete patent sets for each of the technologies. Overall, about 500,000 patents from 1976 to 2012 are classified into these 28 domains. The patents in each of these sets are not only highly relevant to the domain of interest but there are relatively low numbers of patents classified into any two of these domains (total patents classified in 2 domains are 2.9% of the total patents and the great majority of patent class pairs have zero overlap with a few of the 378 patent class pairs containing the bulk of the doubly listed patents). On the other hand, the patents within a given domain cite patents in other domains about 90% of the time. These results suggest that technology can be usefully decomposed to distinct units but that the inventions in these relatively tightly contained units depend upon widely spread additional knowledge
    • …
    corecore