44 research outputs found

    Surfactant-aided impregnation of MnF2 into CNT fabrics as cathode material with high electrochemical performance for lithium ion batteries

    Get PDF
    © 2018 Elsevier Ltd MnF2 infiltrated-CNT fabrics was prepared by surfactant-aided impregnation of MnSiF6 precursors in acid-treated CNT fabric followed by annealing MnSiF6-loaded CNT fabric. The structural and morphological characterizations by X-ray diffraction, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) confirmed the formation of MnF2 nanoparticles (average size: 20–30 nm) within CNT fabric structure. Galvanostatic charge-discharge tests of CNT-MnF2 nanocomposite fabrics showed excellent electrochemical performance and good cycle stability between 0.4 and 4.0 V vs Li/Li+. A specific capacity of 388 mAh/g was measured at 0.1C for CNT-MnF2 fabric with 70% MnF2 loading after 100 cycles. Stable cyclability and good rate performance were obtained at high charge-discharge cycling rates. MnF2 loading largely affect the performance of MnF2 infiltrated-CNT fabrics cathodes when lower than 70% MnF2 loaded-CNT fabrics were prepared. It can be concluded that nano-sized active materials infiltrated inside conductive carbon matrix in optimized content can lead to rapid kinetics and stable performance for flexible metal fluoride-based cathode materials.This work was funded by a grant from the Qatar National Research Fund under its National Priorities Research Program award number NPRP7-567-2-216 . Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the Qatar National Research Fund . The authors are thankful to Prof Gleb Yushin from Georgia Institute of Technology for his collaboration in this subject

    Catalytic Degradation of 4-Ethylpyridine in Water by Heterogeneous Photo-Fenton Process

    Get PDF
    In this work, the degradation of 4-ethylpyridine (4EP) in water by a heterogeneous photo-Fenton process (H2O2/Fe3O4/ultraviolet irradiation (UV)) was investigated. More rapid and effective 4EP degradation was obtained with H2O2/Fe3O4/UV than Fenton-like (H2O2/Fe3O4) and UV/H2O2, which is due to the larger production of hydroxyl radicals from the chemical and photolytic decomposition of H2O2. The operational conditions were varied during 4EP degradation experiments to evaluate the effects of pH, catalyst, concentration, and temperature on the kinetics and efficiency of H2O2/Fe3O4/UV oxidation. Under optimal conditions (100 mg/L 4EP, [H2O2] = 1000 mg/L, Fe3O4 = 40 mg/L, pH = 3 and room temperature, 300 rpm), 4EP was totally declined and more than 93% of the total organic carbon (TOC) was eliminated. Liquid chromatography analysis confirmed the formation of aromatic and aliphatic intermediates (4-hydroxypyridine, 4-pyridone, malonic, oxalic, and formic acids) that resulted in being mineralized. Ion chromatography analysis demonstrated the stoichiometric release of NH4+ ions during 4EP degradation by heterogeneous photo-Fenton oxidation. The reuse of the heterogeneous catalyst was evaluated after chemical and heat treatment at different temperatures. The heat-treated catalyst at 500 °C presented similar activity than the pristine Fe3O4. Accordingly, heterogeneous photo-Fenton oxidation can be an alternative method to treat wastewaters and groundwater contaminated with pyridine derivatives and other organic micropollutants. The combination of heterogeneous photo-Fenton oxidation with classical biological methods can be proposed to reduce the overall cost of the treatment in large-scale water treatment plants. View Full-TextQatar National Librar

    Synthesis, Characterization and Electrochemical Evaluation of Layered Vanadium Phosphates as Cathode Material for Aqueous Rechargeable Zn-ion Batteries

    Get PDF
    The potential application of rechargeable multivalent ion batteries in portable devices and renewable energy grid integration have gained substantial research interest in aqueous Zn-ion batteries (ZIBs). Compared to Li-based batteries, ZIBs offer lower costs, higher energy density, and safety that make them more attractive for energy storage in grid integration applications. Currently, more research is required to find a suitable cathode material for ZIBs with high capacity and structural stability during charge/discharge cycling. Vanadium phosphate (VOP) compounds as cathode material for ZIBs have been of particular interest, owing to vanadium’s diverse oxidation states. In this present work, two VOP compounds, [H0.6(VO)3(PO4)3(H2O)3].4H2O and VOPO4.2H2O, were synthesized from phosphoric acid and different sources of vanadium via a simple hydrothermal method. Various characterization techniques were carried out, revealing the layered structure of both products and high purity of [H0.6(VO)3(PO4)3(H2O)3].4H2O. Zn/VOP batteries were prepared using Zn metal as counter and reference electrode and 3 M ZnSO4.7H2O as electrolyte. Electrochemical tests were conducted to evaluate the cycling performance of VOPs as cathode material for aqueous Zn-ion batteries. Based on the results, both compounds have shown highly reversible Zn-ion intercalation and deintercalation. VOPO4.2H2O achieved a higher specific capacity of up to 85 mAh/g during discharging, as opposed to 65 mAh/g for the hydrated VOP complex. However, [H0.6(VO)3(PO4)3(H2O)3].4H2O is more stable with higher reproducibility than VOPO4.2H2O during cycling. Nevertheless, more research is still required to enhance the specific capacity and improve the cycling performance of VOP-based cathodes for their prospective use in aqueous ZIBs

    Efficient degradation of chloroquine drug by electro-Fenton oxidation: Effects of operating conditions and degradation mechanism

    Get PDF
    In this work, the degradation of chloroquine (CLQ), an antiviral and antimalarial drug, using electro-Fenton oxidation was investigated. Due to the importance of hydrogen peroxide (H2O2) generation during electro-Fenton oxidation, effects of pH, current density, molecular oxygen (O2) flow rate, and anode material on H2O2 generation were evaluated. H2O2 generation was enhanced by increasing the current density up to 60 mA/cm2 and the O2 flow rate up to 80 mL/min at pH 3.0 and using carbon felt cathode and boron-doped diamond (BDD) anode. Electro-Fenton-BDD oxidation achieved the total CLQ depletion and 92% total organic carbon (TOC) removal. Electro-Fenton-BDD oxidation was more effective than electro-Fenton-Pt and anodic oxidation using Pt and BDD anodes. The efficiency of CLQ depletion by electro-Fenton-BDD oxidation raises by increasing the current density and Fe2+ dose; however it drops with the increase of pH and CLQ concentration. CLQ depletion follows a pseudo-first order kinetics in all the experiments. The identification of CLQ degradation intermediates by chromatography methods confirms the formation of 7-chloro-4-quinolinamine, oxamic, and oxalic acids. Quantitative amounts of chlorides, nitrates, and ammonium ions are released during electro-Fenton oxidation of CLQ. The high efficiency of electro-Fenton oxidation derives from the generation of hydroxyl radicals from the catalytic decomposition of H2O2 by Fe2+ in solution, and the electrogeneration of hydroxyl and sulfates radicals and other strong oxidants (persulfates) from the oxidation of the electrolyte at the surface BDD anode. Electro-Fenton oxidation has the potential to be an alternative method for treating wastewaters contaminated with CLQ and its derivatives

    Electrochemical Analysis of Sulfisoxazole Using Glassy Carbon Electrode (GCE) and MWCNTs/Rare Earth Oxide (CeO2 and Yb2O3) Modified-GCE Sensors

    Get PDF
    In this work, new electrochemical sensors based on the modification of glassy carbon electrode (GCE) with multiwalled carbon nanotubes (MWCNTs)—rare metal oxides (REMO) nanocomposites were fabricated by drop-to-drop method of MWCNTs-REMO dispersion in ethanol. REMO nanoparticles were synthesized by precipitation followed by hydrothermal treatment at 180◦C in absence and presence of Triton™ X-100 surfactant. Cyclic voltammetry (CV) analysis using MWCNTs-CeO2@GCE and MWCNTs-Yb2O3@GCE sensors were used for the analysis of sulfisoxazole (SFX) drug in water samples. The results of CV analysis showed that MWCNTs-REMO@GCE sensors have up to 40-fold higher sensitivity with CeO2 compared to the bare GCE sensor. The estimated values of the limit of detection (LoD) of this electrochemical sensing using MWCNTs-CeO2@GCE and MWCNTs-Yb2O3@GCE electrodes reached 0.4 and 0.7 µM SFX in phosphate buffer pH = 7, respectively. These findings indicate that MWCNTs-REMO@GCE electrodes are potential sensors for analysis of sulfonamide drugs in water and biological samples.Qatar University Internal Student Grant - No. QUST-1-CAS-2022-33

    Electrolytic oxidation as a sustainable method to transform urine into nutrients

    Get PDF
    © 2020 by the authors. In this work, the transformation of urine into nutrients using electrolytic oxidation in a single-compartment electrochemical cell in galvanostatic mode was investigated. The electrolytic oxidation was performed using thin film anode materials: boron-doped diamond (BDD) and dimensionally stable anodes (DSA). The transformation of urine into nutrients was confirmed by the release of nitrate (NO3-) and ammonium (NH4 +) ions during electrolytic treatment of synthetic urine aqueous solutions. The removal of chemical oxygen demand (COD) and total organic carbon (TOC) during electrolytic treatment confirmed the conversion of organic pollutants into biocompatible substances. Higher amounts of NO3-and NH4 + were released by electrolytic oxidation using BDD compared to DSA anodes. The removal of COD and TOC was faster using BDD anodes at different current densities. Active chlorine and chloramines were formed during electrolytic treatment, which is advantageous to deactivate any pathogenic microorganisms. Larger quantities of active chlorine and chloramines were measured with DSA anodes. The control of chlorine by-products to concentrations lower than the regulations require can be possible by lowering the current density to values smaller than 20 mA/cm2. Electrolytic oxidation using BDD or DSA thin film anodes seems to be a sustainable method capable of transforming urine into nutrients, removing organic pollution, and deactivating pathogens

    Mineralization of Riluzole by Heterogeneous Fenton Oxidation Using Natural Iron Catalysts

    Get PDF
    Fenton (H2O2/Fe2+) system is a simple and efficient advanced oxidation technology (AOT) for the treatment of organic micropollutants in water and soil. However, it suffers from some drawbacks including high amount of the catalyst, acid pH requirement, sludge formation and slow regeneration of Fe2+ ions. If these drawbacks are surmounted, Fenton system can be the best choice AOT for the removal of persistent organics from water and soil. In this work, it was attempted to replace the homogeneous catalyst with a heterogeneous natural iron-based catalyst for the decomposition of H2O2 into oxidative radical species, mainly hydroxyl (HO•) and hydroperoxyl radicals (HO2•). The natural iron-based catalyst is hematite-rich (α-Fe2O3) and contains a nonnegligible amount of magnetite (Fe3O4) indicating the coexistence of Fe (III) and Fe(II) species. A pseudo-first order kinetics was determined for the decomposition of H2O2 by the iron-based solid catalyst with a rate constant increasing with the catalyst dose. The catalytic decomposition of H2O2 into hydroxyl radicals in the presence of the natural Fe-based catalyst was confirmed by the hydroxylation of benzoic acid into salicylic acid. The natural Fe-based catalyst/H2O2 system was applied for the degradation of riluzole in water. It was demonstrated that the smaller the particle size of the catalyst, the larger its surface area and the greater its catalytic activity towards H2O2 decomposition into hydroxyl radicals. The degradation of riluzole can occur at all pH levels in the range 3.0–12.0 with a rate and efficiency greater than H2O2 oxidation alone, indicating that the natural Fe-based catalyst can function at any pH without the need to control the pH by the addition of chemicals. An improvement in the efficiency and kinetics of the degradation of riluzole was observed under UV irradiation for both homogeneous and heterogeneous Fenton systems. The results chromatography analysis demonstrate that the degradation of riluzole starts by the opening of the triazole ring by releasing nitrate, sulfate, and fluoride ions. The reuse of the catalyst after heat treatment at 500 °C demonstrated that the heat-treated catalyst retained an efficiency >90% after five cycles. The results confirmed that the natural sources of iron, as a heterogeneous catalyst in a Fenton-like system, is an appropriate replacement of a Fe2+ homogeneous catalyst. The reuse of the heterogeneous catalyst after a heat-treatment represents an additional advantage of using a natural iron-based catalyst in Fenton-like systems

    Electrochemical oxidation of 2-chloroaniline in single and divided electrochemical flow cells using boron doped diamond anodes

    Get PDF
    Electrochemical oxidation (EO) using boron-doped diamond (BDD) electrodes attracted increasing interests due to its high efficiency in mineralizing chlorinated organic pollutants in water. However, it produces hazardous disinfection by-products (DBPs) including chloramines, chlorate and perchlorate ions and discharges acidic streams. In this work, an attempt to neutralize the acidic effluent and reduce the production of DBPs was developed. To do that, the EO of 2-chloroaniline (2-CA) in single and divided electrochemical flow cells using BDD anode and stainless steel cathode was investigated. The results showed that complete degradation of 2-CA and high mineralization yields were achieved using single and divided compartment cells. The separation of anolyte and catholyte by anion exchange membrane (AEM) in divided electrochemical configuration enhanced the efficiency of the electrochemical treatment and reduced the energy consumption; while, higher concentrations of free chlorine, nitrate, chlorate, and perchlorate ions were generated in the anolyte. A post-treatment of the treated solution in the cathodic compartment at low current density was effective in reducing the amount of free chlorine and chlorate ions, transferring chloride and nitrate ions to the anodic compartment by electro-dialysis, and neutralizing the anolyte and catholyte. Divided electrochemical cell configuration has the potential to achieve more efficient treatment of 2-CA for the recovery of valuable by-products (which can be considered as a powerful synthetic tool, from an environmental point of view; to produce high-added value products)

    Fabrication of Si3n4@si@cu thin films by RF sputtering as high energy anode material for Li-ion batteries

    Get PDF
    Silicon and silicon nitride (Si3N4 ) are some of the most appealing candidates as anode materials for LIBs (Li-ion battery) due to their favorable characteristics: low cost, abundance of Si, and high theoretical capacity. However, these materials have their own set of challenges that need to be addressed for practical applications. A thin film consisting of silicon nitride-coated silicon on a copper current collector (Si3N4@Si@Cu) has been prepared in this work via RF magnetron sputtering (Radio Frequency magnetron sputtering). The anode material was characterized before and after cycling to assess the difference in appearance and composition using XRD (X-ray Powder Diffraction), XPS (X-ray Photoelectron Spectroscopy), SEM/EDX (Scanning Electron Microscopy/ Energy Dispersive X-Ray Analysis), and TEM (Transmission Electron Microscopy). The effect of the silicon nitride coating on the electrochemical performance of the anode material for LIBs was evaluated against Si@Cu film. It has been found that the Si3N4@Si@Cu anode achieved a higher capacity retention (90%) compared to Si@Cu (20%) after 50 cycles in a half-cell versus Li+/Li, indicating a significant improvement in electrochemical performance. In a full cell, the Si3N4@Si@Cu anode achieved excellent efficiency and acceptable specific capacities, which can be enhanced with further research.Qatar University collaborative grant No. QUCG-CAS-20/21-4. Qatar National Research Fund (QNRF) grant No. for NPRP8-1467-1-26
    corecore