4 research outputs found

    Addendum to “Absorption of a massive scalar field by a charged black hole”

    Get PDF
    In [1] we studied the absorption cross section of a scalar field of mass m impinging on a static black hole of mass M and charge Q. We presented numerical results using the partial-wave method, and analytical results in the high- and low-frequency limit. Our low-frequency approximation was only valid if the (dimensionless) field velocity v exceeds vc=2πMm. In this addendum we give the complementary result for v≲vc, and we consider the possible physical relevance of this regime

    On-axis scalar absorption cross section of Kerr–Newman black holes: Geodesic analysis, sinc and low-frequency approximations

    Get PDF
    We investigate null geodesics impinging parallel to the rotation axis of a Kerr–Newman black hole, and show that the absorption cross section for a massless scalar field in the eikonal limit can be described in terms of the photon orbit parameters. We compare our sinc and low-frequency approximations with numerical results, showing that they are in excellent agreement

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time, and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space. While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes, vast areas of the tropics remain understudied. In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity, but it remains among the least known forests in America and is often underrepresented in biodiversity databases. To worsen this situation, human-induced modifications may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge, it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
    corecore