162 research outputs found

    Inotropes in goal-directed therapy: Do we need 'goals'?

    Get PDF
    There is substantial evidence to demonstrate the benefits of goal-directed hemodynamic optimization using fluid loading or inotropic support or both to improve outcome during major surgery. However, until now, only limited pathophysiological data have been available to explain this benefit. The maintenance of adequate tissue perfusion and global oxygen delivery is an essential goal for therapy. In an interesting study, Jhanji and colleagues provided additional data that emphasize the roles of optimization of intravascular fluid status and low doses of inotropes to improve microvascular blood flow and tissue oxygenation. This commentary aims to highlight some issues raised by this important study and provides additional elements to further position these results

    Central venous O2 saturation and venous-to-arterial CO2 difference as complementary tools for goal-directed therapy during high-risk surgery

    Get PDF
    International audienceIntroduction: Central venous oxygen saturation (ScvO 2) is a useful therapeutic target in septic shock and high-risk surgery. We tested the hypothesis that central venous-to-arterial carbon dioxide difference (P(cv-a)CO 2), a global index of tissue perfusion, could be used as a complementary tool to ScvO 2 for goal-directed fluid therapy (GDT) to identify persistent low flow after optimization of preload has been achieved by fluid loading during high-risk surgery. Methods: This is a secondary analysis of results obtained in a study involving 70 adult patients (ASA I to III), undergoing major abdominal surgery, and treated with an individualized goal-directed fluid replacement therapy. All patients were managed to maintain a respiratory variation in peak aortic flow velocity below 13%. Cardiac index (CI), oxygen delivery index (DO 2 i), ScvO 2 , P(cv-a)CO 2 and postoperative complications were recorded blindly for all patients. Results: A total of 34% of patients developed postoperative complications. At baseline, there was no difference in demographic or haemodynamic variables between patients who developed complications and those who did not. In patients with complications, during surgery, both mean ScvO 2 (78 ± 4 versus 81 ± 4%, P = 0.017) and minimal ScvO 2 (minScvO 2) (67 ± 6 versus 72 ± 6%, P = 0.0017) were lower than in patients without complications, despite perfusion of similar volumes of fluids and comparable CI and DO 2 i values. The optimal ScvO 2 cutoff value was 70.6% and minScvO 2 < 70% was independently associated with the development of postoperative complications (OR = 4.2 (95% CI: 1.1 to 14.4), P = 0.025). P(cv-a)CO 2 was larger in patients with complications (7.8 ± 2 versus 5.6 ± 2 mmHg, P < 10-6). In patients with complications and ScvO 2 ≥71%, P(cv-a)CO 2 was also significantly larger (7.7 ± 2 versus 5.5 ± 2 mmHg, P < 10-6) than in patients without complications. The area under the receiver operating characteristic (ROC) curve was 0.785 (95% CI: 0.74 to 0.83) for discrimination of patients with ScvO 2 ≥71% who did and did not develop complications, with 5 mmHg as the most predictive threshold value

    Global utilization of low-dose corticosteroids in severe sepsis and septic shock: a report from the PROGRESS registry

    Get PDF
    The benefits and use of low-dose corticosteroids (LDCs) in severe sepsis and septic shock remain controversial. Surviving sepsis campaign guidelines suggest LDC use for septic shock patients poorly responsive to fluid resuscitation and vasopressor therapy. Their use is suspected to be wide-spread, but paucity of data regarding global practice exists. The purpose of this study was to compare baseline characteristics and clinical outcomes of patients treated or not treated with LDC from the international PROGRESS (PROmoting Global Research Excellence in Severe Sepsis) cohort study of severe sepsis.Journal ArticleMulticenter StudyResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore