7,745 research outputs found
Single nanoparticle measurement techniques
Various single particle measuring techniques are briefly reviewed and the
basic concepts of a new micro-SQUID technique are discussed. It allows
measurements of the magnetization reversal of single nanometer-sized particles
at low temperature. The influence of the measuring technique on the system of
interest is discussed.Comment: 3 pages, 3 figures, conference proceedings of MMM 1999, San Jose,
15-18 Nov., session number BE-0
Uncertainties in Galactic Chemical Evolution Models
We use a simple one-zone galactic chemical evolution model to quantify the uncertainties generated by the input parameters in numerical predictions for a galaxy with properties similar to those of the Milky Way. We compiled several studies from the literature to gather the current constraints for our simulations regarding the typical value and uncertainty of the following seven basic parameters: the lower and upper mass limits of the stellar initial mass function (IMF), the slope of the high-mass end of the stellar IMF, the slope of the delay-time distribution function of Type Ia supernovae (SNe Ia), the number of SNe Ia per M ⊙ formed, the total stellar mass formed, and the final mass of gas. We derived a probability distribution function to express the range of likely values for every parameter, which were then included in a Monte Carlo code to run several hundred simulations with randomly selected input parameters. This approach enables us to analyze the predicted chemical evolution of 16 elements in a statistical manner by identifying the most probable solutions, along with their 68% and 95% confidence levels. Our results show that the overall uncertainties are shaped by several input parameters that individually contribute at different metallicities, and thus at different galactic ages. The level of uncertainty then depends on the metallicity and is different from one element to another. Among the seven input parameters considered in this work, the slope of the IMF and the number of SNe Ia are currently the two main sources of uncertainty. The thicknesses of the uncertainty bands bounded by the 68% and 95% confidence levels are generally within 0.3 and 0.6 dex, respectively. When looking at the evolution of individual elements as a function of galactic age instead of metallicity, those same thicknesses range from 0.1 to 0.6 dex for the 68% confidence levels and from 0.3 to 1.0 dex for the 95% confidence levels. The uncertainty in our chemical evolution model does not include uncertainties relating to stellar yields, star formation and merger histories, and modeling assumptions
Metal Mixing and Ejection in Dwarf Galaxies is Dependent on Nucleosynthetic Source
Using a high resolution simulation of an isolated dwarf galaxy, accounting
for multi-channel stellar feedback and chemical evolution on a star-by-star
basis, we investigate how each of 15 metal species are distributed within our
multi-phase interstellar medium (ISM) and ejected from our galaxy by galactic
winds. For the first time, we demonstrate that the mass fraction probability
distribution functions (PDFs) of individual metal species in the ISM are well
described by a piecewise log-normal and power-law distribution. The PDF
properties vary within each ISM phase. Hot gas is dominated by recent
enrichment, with a significant power-law tail to high metal fractions, while
cold gas is predominately log-normal. In addition, elements dominated by
asymptotic giant branch (AGB) wind enrichment (e.g. N and Ba) mix less
efficiently than elements dominated by supernova enrichment (e.g.
elements and Fe). This result is driven by the differences in source energetics
and source locations, particularly the higher chance compared to massive stars
for AGB stars to eject material into cold gas. Nearly all of the produced
metals are ejected from the galaxy (only 4% are retained), but over 20% of
metals dominated by AGB enrichment are retained. In dwarf galaxies, therefore,
elements synthesized predominately through AGB winds should be both
overabundant and have a larger spread compared to elements synthesized in
either core collapse or Type Ia supernovae. We discuss the observational
implications of these results, their potential use in developing improved
models of galactic chemical evolution, and their generalization to more massive
galaxies.Comment: 18 pages, 7 figures (plus 2 page, 2 figure appendix). Accepted to Ap
JINA-NuGrid Galactic Chemical Evolution Pipeline
Galactic chemical evolution is a topic that involves nuclear physics, stellar
evolution, galaxy evolution, observation, and cosmology. Continuous
communication and feedback between these fields is a key component in improving
our understanding of how galaxies form and how elements are created and
recycled in galaxies and intergalactic space. In this proceedings, we present
the current state of the JINA-NuGrid chemical evolution pipeline. It is
designed to probe the impact of nuclear astrophysics uncertainties on galactic
chemical evolution, to improve our knowledges regarding the origin of the
elements in a cosmological context, and to create the required
interdisciplinary connections.Comment: 3 pages, 2 figures, submitted to JPS Conference Proceedings, Nuclei
in the Cosmos XI
Incommensurate magnetic structure of CeRhIn5
The magnetic structure of the heavy fermion antiferromagnet CeRhIn5 is
determined using neutron diffraction. We find a magnetic wave vector
q_M=(1/2,1/2,0.297), which is temperature independent up to T_N=3.8K. A
staggered moment of 0.374(5) Bohr magneton at 1.4K, residing on the Ce ion,
spirals transversely along the c axis. The nearest neighbor moments on the
tetragonal basal plane are aligned antiferromagnetically.Comment: 4 pages, 4 figures There was an extra factor of 2 in Eq (2). This
affects the value of staggered moment. The correct staggered moment is
0.374(5) Bohr magneton at 1.4
On the Proof of Dark Matter, the Law of Gravity and the Mass of Neutrinos
We develop a new method to predict the density associated with weak lensing
maps of (un)relaxed clusters in a range of theories interpolating between GR
and MOND (General Relativity and Modified Newtonian Dynamics). We apply it to
fit the lensing map of the bullet merging cluster 1E0657-56, in order to
constrain more robustly the nature and amount of collisionless matter in
clusters {\it beyond} the usual assumption of spherical equilibrium
(Pointecouteau & Silk 2005) and the validity of GR on cluster scales (Clowe et
al. 2006). Strengthening the proposal of previous authors we show that the
bullet cluster is dominated by a collisionless -- most probably non-baryonic --
component in GR as well as in MOND, a result consistent with the dynamics of
many X-ray clusters. Our findings add to the number of known pathologies for a
purely baryonic MOND, including its inability to fit the latest data from the
Wilkinson Microwave Anisotropy Probe. A plausible resolution of all these
issues and standard issues of Cold Dark Matter with galaxy rotation curves is
the "marriage" of MOND with ordinary hot neutrinos of 2eV. This prediction is
just within the GR-independent maximum of neutrino mass from current
-decay experiments, and is falsifiable by the Karlsruhe Tritium Neutrino
(KATRIN) experiment by 2009. Issues of consistency with strong lensing arcs and
the large relative velocity of the two clusters comprising the bullet cluster
are also addressed.Comment: 4 pages, 1 figure, accepted for publication in ApJL. Added a simple
model of the bullet cluster's high velocity in TeVeS, and discussions of
sterile neutrinos and of non-uniqueness of the lensing deprojectio
Analytic Expressions for Singular Vectors of the Superconformal Algebra
Using explicit expressions for a class of singular vectors of the
(untwisted) algebra and following the approach of Malikov-Feigin-Fuchs and
Kent, we show that the analytically extended Verma modules contain two linearly
independent neutral singular vectors at the same grade. We construct this two
dimensional space and we identify the singular vectors of the original Verma
modules. We show that in some Verma modules these expressions lead to two
linearly independent singular vectors which are at the same grade and have the
same charge.Comment: 35 pages, LATE
A double-layer Boussinesq-type model for highly nonlinear and dispersive waves
28 pages, 5 figures. Soumis à Proceedings of the Royal Society of London A.We derive and analyze in the framework of the mild-slope approximation a new double-layer Boussinesq-type model which is linearly and nonlinearly accurate up to deep water. Assuming the flow to be irrotational, we formulate the problem in terms of the velocity potential thereby lowering the number of unknowns. The model derivation combines two approaches, namely the method proposed by Agnon et al. (Agnon et al. 1999, J. Fluid Mech., 399 pp. 319-333) and enhanced by Madsen et al. (Madsen et al. 2003, Proc. R. Soc. Lond. A, 459 pp. 1075-1104) which consists in constructing infinite-series Taylor solutions to the Laplace equation, to truncate them at a finite order and to use Padé approximants, and the double-layer approach of Lynett & Liu (Lynett & Liu 2004, Proc. R. Soc. Lond. A, 460 pp. 2637-2669) allowing to lower the order of derivatives. We formulate the model in terms of a static Dirichlet-Neumann operator translated from the free surface to the still-water level, and we derive an approximate inverse of this operator that can be built once and for all. The final model consists of only four equations both in one and two horizontal dimensions, and includes only second-order derivatives, which is a major improvement in comparison with so-called high-order Boussinesq models. A linear analysis of the model is performed and its properties are optimized using a free parameter determining the position of the interface between the two layers. Excellent dispersion and shoaling properties are obtained, allowing the model to be applied up to deep water. Finally, numerical simulations are performed to quantify the nonlinear behaviour of the model, and the results exhibit a nonlinear range of validity reaching deep water areas
Frustration and sound attenuation in structural glasses
Three classes of harmonic disorder systems (Lennard-Jones like glasses,
percolators above threshold, and spring disordered lattices) have been
numerically investigated in order to clarify the effect of different types of
disorder on the mechanism of high frequency sound attenuation. We introduce the
concept of frustration in structural glasses as a measure of the internal
stress, and find a strong correlation between the degree of frustration and the
exponent alpha that characterizes the momentum dependence of the sound
attenuation . In particular, alpha decreases from
about d+1 in low-frustration systems (where d is the spectral dimension), to
about 2 for high frustration systems like the realistic glasses examined.Comment: Revtex, 4 pages including 4 figure
Anomalous Conductance Distribution in Quasi-One Dimension: Possible Violation of One-Parameter Scaling Hypothesis
We report measurements of conductance distribution in a set of
quasi-one-dimensional gold wires. The distribution includes the second cumulant
or the variance which describes the universal conductance fluctuations, and the
third cumulant which denotes the leading deviation. We have observed an
asymmetric contribution--or, a nonvanishing third cumulant--contrary to the
expectation for quasi-one-dimensional systems in the noninteracting theories in
the one-parameter scaling framework, which include the perturbative
diagrammatic calculations and the random matrix theory.Comment: 5 PAGE
- …