12 research outputs found

    Total Synthesis of Pactamycin and Pactamycate: A Detailed Account

    No full text
    This article describes synthetic studies that culminated in the first total synthesis of pactamycin and pactamycate and, in parallel, the two known congeners, de-6-MSA-pactamycin and de-6-MSA-pactamycate, lacking the 6-methylsalicylyl moiety. Starting with l-threonine as a <i>chiron</i>, a series of stereocontrolled condensations led to a key cyclopentenone harboring a spirocyclic oxazoline. A series of systematic functionalizations led initially to the incorrect cyclopentanone epoxide, which was “inverted” under solvolytic conditions. Installation of the remaining groups and manipulation of the oxazoline eventually led to pactamycin, pactamycate, and their desalicylyl analogues

    Total Synthesis of Pactamycin and Pactamycate: A Detailed Account

    No full text
    This article describes synthetic studies that culminated in the first total synthesis of pactamycin and pactamycate and, in parallel, the two known congeners, de-6-MSA-pactamycin and de-6-MSA-pactamycate, lacking the 6-methylsalicylyl moiety. Starting with l-threonine as a <i>chiron</i>, a series of stereocontrolled condensations led to a key cyclopentenone harboring a spirocyclic oxazoline. A series of systematic functionalizations led initially to the incorrect cyclopentanone epoxide, which was “inverted” under solvolytic conditions. Installation of the remaining groups and manipulation of the oxazoline eventually led to pactamycin, pactamycate, and their desalicylyl analogues

    Total Synthesis of Pactamycin and Pactamycate: A Detailed Account

    No full text
    This article describes synthetic studies that culminated in the first total synthesis of pactamycin and pactamycate and, in parallel, the two known congeners, de-6-MSA-pactamycin and de-6-MSA-pactamycate, lacking the 6-methylsalicylyl moiety. Starting with l-threonine as a <i>chiron</i>, a series of stereocontrolled condensations led to a key cyclopentenone harboring a spirocyclic oxazoline. A series of systematic functionalizations led initially to the incorrect cyclopentanone epoxide, which was “inverted” under solvolytic conditions. Installation of the remaining groups and manipulation of the oxazoline eventually led to pactamycin, pactamycate, and their desalicylyl analogues

    Total Synthesis of Pactamycin and Pactamycate: A Detailed Account

    No full text
    This article describes synthetic studies that culminated in the first total synthesis of pactamycin and pactamycate and, in parallel, the two known congeners, de-6-MSA-pactamycin and de-6-MSA-pactamycate, lacking the 6-methylsalicylyl moiety. Starting with l-threonine as a <i>chiron</i>, a series of stereocontrolled condensations led to a key cyclopentenone harboring a spirocyclic oxazoline. A series of systematic functionalizations led initially to the incorrect cyclopentanone epoxide, which was “inverted” under solvolytic conditions. Installation of the remaining groups and manipulation of the oxazoline eventually led to pactamycin, pactamycate, and their desalicylyl analogues

    Total Synthesis of Pactamycin and Pactamycate: A Detailed Account

    No full text
    This article describes synthetic studies that culminated in the first total synthesis of pactamycin and pactamycate and, in parallel, the two known congeners, de-6-MSA-pactamycin and de-6-MSA-pactamycate, lacking the 6-methylsalicylyl moiety. Starting with l-threonine as a <i>chiron</i>, a series of stereocontrolled condensations led to a key cyclopentenone harboring a spirocyclic oxazoline. A series of systematic functionalizations led initially to the incorrect cyclopentanone epoxide, which was “inverted” under solvolytic conditions. Installation of the remaining groups and manipulation of the oxazoline eventually led to pactamycin, pactamycate, and their desalicylyl analogues

    Total Synthesis of Pactamycin and Pactamycate: A Detailed Account

    No full text
    This article describes synthetic studies that culminated in the first total synthesis of pactamycin and pactamycate and, in parallel, the two known congeners, de-6-MSA-pactamycin and de-6-MSA-pactamycate, lacking the 6-methylsalicylyl moiety. Starting with l-threonine as a <i>chiron</i>, a series of stereocontrolled condensations led to a key cyclopentenone harboring a spirocyclic oxazoline. A series of systematic functionalizations led initially to the incorrect cyclopentanone epoxide, which was “inverted” under solvolytic conditions. Installation of the remaining groups and manipulation of the oxazoline eventually led to pactamycin, pactamycate, and their desalicylyl analogues

    Species Plantarum

    No full text
    Verso originally left blank for additional notes. Notes made level with related material on facing page

    Total Synthesis of Pactamycin and Pactamycate: A Detailed Account

    No full text
    This article describes synthetic studies that culminated in the first total synthesis of pactamycin and pactamycate and, in parallel, the two known congeners, de-6-MSA-pactamycin and de-6-MSA-pactamycate, lacking the 6-methylsalicylyl moiety. Starting with l-threonine as a <i>chiron</i>, a series of stereocontrolled condensations led to a key cyclopentenone harboring a spirocyclic oxazoline. A series of systematic functionalizations led initially to the incorrect cyclopentanone epoxide, which was “inverted” under solvolytic conditions. Installation of the remaining groups and manipulation of the oxazoline eventually led to pactamycin, pactamycate, and their desalicylyl analogues

    Total Synthesis of Pactamycin and Pactamycate: A Detailed Account

    No full text
    This article describes synthetic studies that culminated in the first total synthesis of pactamycin and pactamycate and, in parallel, the two known congeners, de-6-MSA-pactamycin and de-6-MSA-pactamycate, lacking the 6-methylsalicylyl moiety. Starting with l-threonine as a <i>chiron</i>, a series of stereocontrolled condensations led to a key cyclopentenone harboring a spirocyclic oxazoline. A series of systematic functionalizations led initially to the incorrect cyclopentanone epoxide, which was “inverted” under solvolytic conditions. Installation of the remaining groups and manipulation of the oxazoline eventually led to pactamycin, pactamycate, and their desalicylyl analogues

    Total Synthesis of Pactamycin and Pactamycate: A Detailed Account

    No full text
    This article describes synthetic studies that culminated in the first total synthesis of pactamycin and pactamycate and, in parallel, the two known congeners, de-6-MSA-pactamycin and de-6-MSA-pactamycate, lacking the 6-methylsalicylyl moiety. Starting with l-threonine as a <i>chiron</i>, a series of stereocontrolled condensations led to a key cyclopentenone harboring a spirocyclic oxazoline. A series of systematic functionalizations led initially to the incorrect cyclopentanone epoxide, which was “inverted” under solvolytic conditions. Installation of the remaining groups and manipulation of the oxazoline eventually led to pactamycin, pactamycate, and their desalicylyl analogues
    corecore