33 research outputs found

    Genomic location of the bovine growth hormone secretagogue receptor (Ghsr) gene and investigation of genetic polymorphism

    Full text link
    The growth hormone secretagogue receptor (GHSR) is involved in the regulation of energetic homeostasis and GH secretion. In this study, the bovine GHSR gene was mapped to BTA1 between BL26 and BMS4004. Two different bovine GHSR CDS (GHSR1a and GHSR1b) were sequenced. Six polymorphisms (five SNPs and one 3-bp indel) were also identified, three of them leading to amino acid variations L24V, D194N, and Del R242. These variations are located in the extracellular N-terminal end, the exoloop 2, and the cytoloop 3 of the receptor, respectively

    Variability and Action Mechanism of a Family of Anticomplement Proteins in Ixodes ricinus

    Get PDF
    Background: Ticks are blood feeding arachnids that characteristically take a long blood meal. They must therefore counteract host defence mechanisms such as hemostasis, inflammation and the immune response. This is achieved by expressing batteries of salivary proteins coded by multigene families. Methodology/Principal Findings: We report the in-depth analysis of a tick multigene family and describe five new anticomplement proteins in ixodes ricinus. Compared to previously described Ixodes anticomplement proteins, these segregated into a new phylogenetic group or subfamily. These proteins have a novel action mechanism as they specifically bind to properdin, leading to the inhibition of C3 convertase and the alternative complement pathway. An excess of non-synonymous over synonymous changes indicated that coding sequences had undergone diversifying selection. Diversification was not associated with structural, biochemical o, functional diversity, adaptation to host species or stage specificity but rather to differences in antigenicity. Conclusion/Significance: Anticomplement proteins from I. ricinus are the first inhibitors that specifically target a positive regulator of complement, properdin. They may provide new tools for the investigation of role of properdin in physiological and pathophysiological mechanisms. They may also be useful in disorders affecting the alternative complement pathway, Looking for and detecting the different selection pressures involved will help in understanding the evolution of multigene families and hematophagy in arthropods. © 2008 Couveur et al.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    A Fast Method To Predict Protein Interaction Sites From Sequences

    Full text link
    A simple method for predicting residues involved in protein interaction sites is proposed. In the absence of any structural report, the procedure identifies linear stretches of sequences as "receptor-binding domains" (RBDs) by analysing hydrophobicity distribution. The sequences of two databases of non-homologous interaction sites eliciting various biological activities were tested; 59-80 % were detected as RBDs. A statistical analysis of amino acid frequencies was carried out in known interaction sites and in predicted RBDs. RBDs were predicted from the 80,000 sequences of the Swissprot database. In both cases, arginine is the most frequently occurring residue. The RBD procedure can also detect residues involved in specific interaction sites such as the DNA-binding (95 % detected) and Ca-binding domains (83 % detected). We report two recent analyses; from the prediction of RBDs in sequences to the experimental demonstration of the functional activities. The examples concern a retroviral Gag protein and a penicillin-binding protein. We support that this method is a quick way to predict protein interaction sites from sequences and is helpful for guiding experiments such as site-specific mutageneses, two-hybrid systems or the synthesis of inhibitors

    The "Tilted Peptide Theory" links membrane insertion properties and fusogenicity of viral fusion peptides.

    Full text link
    Class I fusion glycoproteins of viruses are involved in the fusion between viral envelope and cell membrane. A region located in the N-terminal domain of these glycoproteins, called the fusion peptide, is essential for fusion. Fusion peptides are able to induce by themselves in vitro membrane fusion. In this paper, we review the properties of those peptides related to their fusogenicity, in particular the correlation existing between their ability to insert obliquely in membranes and fusogenicity. This relation notably allows predicting successfully the minimal region of some fusion peptides sufficient to induce significant in vitro fusion. The notion of obliquity and fusogenicity is discussed in terms of the existing proposed mechanisms for viral fusion

    Prediction Of Membrane Protein Orientation In Lipid Bilayers: A Theoretical Approach

    Full text link
    Over the past few years, several three-dimensional (3-D) structures of membrane proteins have been described with increasing accuracy, but their relationship with membranes are still not well understood. Recently, we have developed an empirical method, Integral Membrane Protein and Lipid Association (IMPALA), to predict the insertion of molecules (lipids, drugs) into lipid bilayers (Proteins 30 (1998) 357). The IMPALA uses a Monte Carlo minimisation procedure to calculate the depth and the angle of insertion of membrane-interacting molecules taking into account the restraints dictated by a lipid bilayer. In this paper, we use IMPALA to test the insertion of 23 integral membranous proteins (IMPs) and 2 soluble proteins into membranes. Four IMP are studied in detail: OmpA, maltoporin, MsCl channel and bacteriorhodopsin. The 3-D structures of the proteins are kept constant and the insertion into membrane is monitored by minimising the value of the restraint representing the sum of two terms, one for lipid perturbation and the other for hydrophobicity. The two soluble proteins are rejected from the membrane whereas, under the same conditions, all the membrane proteins remain inside, if the solvent accessible surface of the amino acids located inside the pore of porins is ignored. The results give the tilt angle of the IMP helices or strands with respect to the membrane surface and the depth of the protein mass centre insertion. We conclude that the restraint terms of IMPALA could be used to study the insertion of model structures or complexes of proteins within membranes
    corecore