703 research outputs found
Optimization by gradient boosting
Gradient boosting is a state-of-the-art prediction technique that
sequentially produces a model in the form of linear combinations of simple
predictors---typically decision trees---by solving an infinite-dimensional
convex optimization problem. We provide in the present paper a thorough
analysis of two widespread versions of gradient boosting, and introduce a
general framework for studying these algorithms from the point of view of
functional optimization. We prove their convergence as the number of iterations
tends to infinity and highlight the importance of having a strongly convex risk
functional to minimize. We also present a reasonable statistical context
ensuring consistency properties of the boosting predictors as the sample size
grows. In our approach, the optimization procedures are run forever (that is,
without resorting to an early stopping strategy), and statistical
regularization is basically achieved via an appropriate penalization of
the loss and strong convexity arguments
Statistical analysis of -nearest neighbor collaborative recommendation
Collaborative recommendation is an information-filtering technique that
attempts to present information items that are likely of interest to an
Internet user. Traditionally, collaborative systems deal with situations with
two types of variables, users and items. In its most common form, the problem
is framed as trying to estimate ratings for items that have not yet been
consumed by a user. Despite wide-ranging literature, little is known about the
statistical properties of recommendation systems. In fact, no clear
probabilistic model even exists which would allow us to precisely describe the
mathematical forces driving collaborative filtering. To provide an initial
contribution to this, we propose to set out a general sequential stochastic
model for collaborative recommendation. We offer an in-depth analysis of the
so-called cosine-type nearest neighbor collaborative method, which is one of
the most widely used algorithms in collaborative filtering, and analyze its
asymptotic performance as the number of users grows. We establish consistency
of the procedure under mild assumptions on the model. Rates of convergence and
examples are also provided.Comment: Published in at http://dx.doi.org/10.1214/09-AOS759 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Cox process functional learning
International audienceThis article addresses the problem of supervised classification of Cox process trajectories, whose random intensity is driven by some exogenous random covariable. The classification task is achieved through a regularized convex empirical risk minimization procedure, and a nonasymptotic oracle inequality is derived. We show that the algorithm provides a Bayes-risk consistent classifier. Furthermore, it is proved that the classifier converges at a rate which adapts to the unknown regularity of the intensity process. Our results are obtained by taking advantage of martingale and stochastic calculus arguments, which are natural in this context and fully exploit the functional nature of the problem
On the kernel rule for function classification
International audienceLet X be a random variable taking values in a function space F, and let Y be a discrete random label with values 0 and 1. We investigate asymptotic properties of the moving window classification rule based on independent copies of the pair (X, Y ). Contrary to the finite dimensional case, it is shown that the moving window classifier is not universally consistent in the sense that its probability of error may not converge to the Bayes risk for some distributions of (X, Y ). Sufficient conditions both on the space F and the distribution of X are then given to ensure consistency
Sur l'estimation du support d'une densité
International audienceEtant donnée une densité de probabilité multivariée inconnue à support compact et un -échantillon i.i.d. issu de , nous étudions l'estimateur du support de défini par l'union des boules de rayon centrées sur les observations. Afin de mesurer la qualité de l'estimation, nous utilisons un critère général fondé sur le volume de la différence symétrique. Sous quelques hypothèses peu restrictives, et en utilisant des outils de la géométrie riemannienne, nous établissons les vitesses de convergence exactes de l'estimateur du support tout en examinant les conséquences statistiques de ces résultats
Un modèle stochastique pour les systèmes de recommandation
International audienceLes systèmes de recommandation établissent des suggestions personnalisées à des individus concernant des objets (livres, films, musique) susceptibles de les intéresser. Les recommandations sont généralement basées sur l'estimation de notes relatives à des objets que l'utilisateur n'a pas consommés. En dépit d'une littérature abondante, les propriétés statistiques des systèmes de recommandation ne sont pas encore clairement établies. Dans ce travail, nous proposons un modèle stochastique pour les systèmes de recommandation et nous analysons ses propriétés asymptotiques lorsque le nombre d'utilisateurs augmente. Nous établissons la convergence de la procédure sous de faibles hypothèses concernant le modèle. Les vitesses de convergence sont également présentées
Autochtones et langue française dans les départements et territoires d'Outre-Mer
L'importance de la population allochtone et de la pratique écrite de la langue française, fait apparaître de grandes différences entre les départements et territoires d'outre-mer, mais aussi à l'intérieur de chacun d'eux. (Résumé d'auteur
Asymptotic Normality in Density Support Estimation
http://www.math.washington.edu/~ejpecp/index.phpInternational audienceLet be independent observations drawn from a multivariate probability density with compact support . This paper is devoted to the study of the estimator of defined as unions of balls centered at the and of common radius . Using tools from Riemannian geometry, and under mild assumptions on and the sequence , we prove a central limit theorem for , where denotes the Lebesgue measure on and the symmetric difference operatio
Strongly consistent model selections for densities
International audienceLet f be an unknown multivariate density belonging to a set of densities Fk! of finite associated Vapnik-Chervonenkis dimension, where the complexity k! is unknown, and Fk ! Fk+1 for all k. Given an i.i.d. sample of size n drawn from f, this article presents a density estimate ˆ fKn yielding almost sure convergence of the estimated complexity Kn to the true but unknown k!, and with the property E{ ! | ˆ fKn − f|} = O(1/#n). The methodology is inspired by the combinatorial tools developed in Devroye and Lugosi [8] and it includes a wide range of density models, such as mixture models and exponential families
On the Data Complexity of Statistical Attacks Against Block Ciphers (full version)
Many attacks on iterated block ciphers rely on statistical considerations using plaintext/ciphertext pairs to distinguish some part of the cipher from a random permutation. We provide here a simple formula for estimating the amount of plaintext/ciphertext pairs which is needed for such distinguishers and which applies to a lot of different scenarios (linear cryptanalysis, differential-linear cryptanalysis, differential/truncated differential/impossible differential cryptanalysis). The asymptotic data complexities of all these attacks are then derived. Moreover, we give an efficient algorithm for computing the data complexity accurately
- …