1,926 research outputs found

    Simulations of Glitches in Isolated Pulsars

    Get PDF
    Many radio pulsars exhibit glitches wherein the star's spin rate increases fractionally by 1010106\sim 10^{-10} - 10^{-6}. Glitches are ascribed to variable coupling between the neutron star crust and its superfluid interior. With the aim of distinguishing among different theoretical explanations for the glitch phenomenon, we study the response of a neutron star to two types of perturbations to the vortex array that exists in the superfluid interior: 1) thermal motion of vortices pinned to inner crust nuclei, initiated by sudden heating of the crust, (e.g., a starquake), and 2) mechanical motion of vortices, (e.g., from crust cracking by superfluid stresses). Both mechanisms produce acceptable fits to glitch observations in four pulsars, with the exception of the 1989 glitch in the Crab pulsar, which is best fit by the thermal excitation model. The two models make different predictions for the generation of internal heat and subsequent enhancement of surface emission. The mechanical glitch model predicts a negligible temperature increase. For a pure and highly-conductive crust, the thermal glitch model predicts a surface temperature increase of as much as \sim 2%, occurring several weeks after the glitch. If the thermal conductivity of the crust is lowered by a high concentration of impurities, however, the surface temperature increases by \sim 10% about a decade after a thermal glitch. A thermal glitch in an impure crust is consistent with the surface emission limits following the January 2000 glitch in the Vela pulsar. Future surface emission measurements coordinated with radio observations will constrain glitch mechanisms and the conductivity of the crust.Comment: 21 pages, 10 figures, submitted to MNRA

    Dark Matter, Muon g-2 and Other SUSY Constraints

    Full text link
    Recent developments constraining the SUSY parameter space are reviewed within the framework of SUGRA GUT models. The WMAP data is seen to reduce the error in the density of cold dark matter by about a factor of four, implying that the lightest stau is only 5 -10 GeV heavier than the lightest neutralino when m_0, m_{1/2} < 1 TeV. The CMD-2 re-analysis of their data has reduced the disagreement between the Standard Model prediction and the Brookhaven measurement of the muon magnetic moment to 1.9 sigma, while using the tau decay data plus CVC, the disagreement is 0.7 sigma. (However, the two sets of data remain inconsistent at the 2.9 sigma level.) The recent Belle and BABAR measurements of the B -> phi K CP violating parameters and branching ratios are discussed. They are analyzed theoretically within the BBNS improved factorization method. The CP parameters are in disagreement with the Standard Model at the 2.7 sigma level, and the branching ratios are low by a factor of two or more over most of the parameter space. It is shown that both anomalies can naturally be accounted for by adding a non-universal cubic soft breaking term at M_G mixing the second and third generations.Comment: 16 pages, 7 figures, plenary talk at Beyond The Desert '03, Castle Ringberg, Germany, June 9, 2003. Typos correcte

    Coordination cages as permanently porous ionic liquids

    Get PDF
    Porous materials are widely used in industry for applications that include chemical separations and gas scrubbing. These materials are typically porous solids, although the liquid state can be easier to manipulate in industrial settings. The idea of combining the size and shape selectivity of porous domains with the fluidity of liquids is a promising one and porous liquids composed of functionalized organic cages have recently attracted attention. Here we describe an ionic-liquid, porous, tetrahedral coordination cage. Complementing the gas binding observed in other porous liquids, this material also encapsulates non-gaseous guests—shape and size selectivity was observed for a series of isomeric alcohols. Three gaseous chlorofluorocarbon guests, trichlorofluoromethane, dichlorodifluoromethane and chlorotrifluoromethane, were also shown to be taken up by the liquid coordination cage with an affinity that increased with their size. We hope that these findings will lead to the synthesis of other porous liquids whose guest-uptake properties may be tailored to fulfil specific functions

    Entropy flow in near-critical quantum circuits

    Full text link
    Near-critical quantum circuits are ideal physical systems for asymptotically large-scale quantum computers, because their low energy collective excitations evolve reversibly, effectively isolated from the environment. The design of reversible computers is constrained by the laws governing entropy flow within the computer. In near-critical quantum circuits, entropy flows as a locally conserved quantum current, obeying circuit laws analogous to the electric circuit laws. The quantum entropy current is just the energy current divided by the temperature. A quantum circuit made from a near-critical system (of conventional type) is described by a relativistic 1+1 dimensional relativistic quantum field theory on the circuit. The universal properties of the energy-momentum tensor constrain the entropy flow characteristics of the circuit components: the entropic conductivity of the quantum wires and the entropic admittance of the quantum circuit junctions. For example, near-critical quantum wires are always resistanceless inductors for entropy. A universal formula is derived for the entropic conductivity: \sigma_S(\omega)=iv^{2}S/\omega T, where \omega is the frequency, T the temperature, S the equilibrium entropy density and v the velocity of `light'. The thermal conductivity is Real(T\sigma_S(\omega))=\pi v^{2}S\delta(\omega). The thermal Drude weight is, universally, v^{2}S. This gives a way to measure the entropy density directly.Comment: 2005 paper published 2017 in Kadanoff memorial issue of J Stat Phys with revisions for clarity following referee's suggestions, arguments and results unchanged, cross-posting now to quant-ph, 27 page

    Specific staining of human chromosomes in Chinese hamster x man hybrid cell lines demonstrates interphase chromosome territories

    Get PDF
    In spite of Carl Rabl's (1885) and Theodor Boveri's (1909) early hypothesis that chromosomes occupy discrete territories or domains within the interphase nucleus, evidence in favor pf this hypothesis has been limited and indirect so far in higher plants and animals. The alternative possibility that the chromatin fiber of single chromosomes might be extended throughout the major part of even the whole interphase nucleus has been considered for many years. In the latter case, chromosomes would only exist as discrete chromatin bodies during mitosis but not during interphase. Both possibilities are compatible with Boveri's well established paradigm of chromosome individuality. Here we show that an active human X chromosome contained as the only human chromosome in a Chinese hamster x man hybrid cell line can be visualized both in metaphse plates and in interphase nuclei after in situ hybridization with either 3H- or biotin-labeled human genomic DNA. We demonstrate that this chromosome is organized as a distinct chromatin body throughout interphase. In addition, evidence for the territorial organization of human chromosomes is also presented for another hybrid cell line containing several autosomes and the human X chromosome. These findings are discussed in the context of our present knowledge of the organization and topography of interphase chromosomes. General applications of a strategy aimed at specific staining of individual chromosomes in experimental and clinical cytogenetics are briefly considered

    Supernatants from lymphocytes stimulated with Bacillus Calmette-Guerin can modify the antigenicity of tumours and stimulate allogeneic T-cell responses

    Get PDF
    BACKGROUND: Reduced expression of class 1 human leucocyte antigens (HLA1) is often a mechanism by which tumours evade surveillance by the host immune system. This is often associated with an immune function that is unable to mount appropriate responses against disease, which can result in a state that favours carcinogenesis. METHODS: In the current study, we have explored the effects of Bacillus Calmette-Guerin (BCG) on the cytokine output of leucocytes, which is a key determinant in generating antitumour action, and have also assessed the effect of these cytokine cocktails on HLA1 expression in solid tumour cell lines. RESULTS: BCG potently activated a broad range of leucocytes, and also enhanced the production of cytokines that were Th(1)-predominant. Supernatants from BCG-treated leucocytes significantly increased the expression of HLA1 on the surface of cancer cell lines, which correlated with increased cytolytic T-cell activity. We also showed that the increased HLA1 expression was associated with activation of intracellular signalling pathways, which was triggered by the increases in the Th(1)-cytokines interferon-γ and tumour necrosis factor-α, as counteracting their effects negated the enhancement. CONCLUSION: These studies reaffirm the role of BCG as a putative immunotherapy through their cytokine-modifying effects on leucocytes and their capacity to enhance tumour visibility

    Universal growth scheme for quantum dots with low fine-Structure splitting at various emission wavelengths

    Get PDF
    Efficient sources of individual pairs of entangled photons are required for quantum networks to operate using fibre optic infrastructure. Entangled light can be generated by quantum dots (QDs) with naturally small fine-structure-splitting (FSS) between exciton eigenstates. Moreover, QDs can be engineered to emit at standard telecom wavelengths. To achieve sufficient signal intensity for applications, QDs have been incorporated into 1D optical microcavities. However, combining these properties in a single device has so far proved elusive. Here, we introduce a growth strategy to realise QDs with small FSS in the conventional telecom band, and within an optical cavity. Our approach employs droplet-epitaxy of InAs quantum dots on (001) substrates. We show the scheme improves the symmetry of the dots by 72%. Furthermore, our technique is universal, and produces low FSS QDs by molecular beam epitaxy on GaAs emitting at ~900nm, and metal-organic vapour phase epitaxy on InP emitting at 1550 nm, with mean FSS 4x smaller than for Stranski-Krastanow QDs

    Electronic Health Literacy Across the Lifespan: Measurement Invariance Study

    Get PDF
    Background: Electronic health (eHealth) information is ingrained in the healthcare experience to engage patients across the lifespan. Both eHealth accessibility and optimization are influenced by lifespan development, as older adults experience greater challenges accessing and using eHealth tools as compared to their younger counterparts. The eHealth Literacy Scale (eHEALS) is the most popular measure used to assess patient confidence locating, understanding, evaluating, and acting upon online health information. Currently, however, the factor structure of the eHEALS across discrete age groups is not well understood, which limits its usefulness as a measure of eHealth literacy across the lifespan. Objective: The purpose of this study was to examine the structure of eHEALS scores and the degree of measurement invariance among US adults representing the following generations: Millennials (18-35-year-olds), Generation X (36-51-year-olds), Baby Boomers (52-70-year-olds), and the Silent Generation (71-84-year-olds). Methods: Millennials (N=281, mean 26.64 years, SD 5.14), Generation X (N=164, mean 42.97 years, SD 5.01), and Baby Boomers/Silent Generation (N=384, mean 62.80 years, SD 6.66) members completed the eHEALS. The 3-factor (root mean square error of approximation, RMSEA=.06, comparative fit index, CFI=.99, Tucker-Lewis index, TLI=.98) and 4-factor (RMSEA=.06, CFI=.99, TLI=.98) models showed the best global fit, as compared to the 1- and 2-factor models. However, the 4-factor model did not have statistically significant factor loadings on the 4th factor, which led to the acceptance of the 3-factor eHEALS model. The 3-factor model included eHealth Information Awareness, Search, and Engagement. Pattern invariance for this 3-factor structure was supported with acceptable model fit (RMSEA=.07, Δχ2=P>.05, ΔCFI=0). Compared to Millennials and members of Generation X, those in the Baby Boomer and Silent Generations reported less confidence in their awareness of eHealth resources (P<.001), information seeking skills (P=.003), and ability to evaluate and act on health information found on the Internet (P<.001). Results: Young (18-48-year olds, N=411) and old (49-84-year olds, N=419) adults completed the survey. A 3-factor model had the best fit (RMSEA=.06, CFI=.99, TLI=.98), as compared to the 1-factor, 2-factor, and 4-factor models. These 3-factors included eHealth Information Awareness (2 items), Information Seeking (2 items), and Information and Evaluation (4 items). Pattern invariance was supported with the acceptable model fit (RMSEA=.06, Δχ2=P>.05, ΔCFI=0). Compared with younger adults, older adults had less confidence in eHealth resource awareness (P<.001), information seeking skills (P<.01), and ability to evaluate and act upon online health information (P<.001). Conclusions: The eHEALS can be used to assess, monitor uniquely, and evaluate Internet users’ awareness of eHealth resources, information seeking skills, and engagement abilities. Configural and pattern invariance was observed across all generation groups in the 3-factor eHEALS model. To meet gold the standards for factor interpretation (ie, 3 items or indicators per factor), future research is needed to create and assess additional eHEALS items. Future research is also necessary to identify and test items for a fourth factor, one that captures the social nature of eHealth

    Age-related delay in information accrual for faces: Evidence from a parametric, single-trial EEG approach

    Get PDF
    Background: In this study, we quantified age-related changes in the time-course of face processing by means of an innovative single-trial ERP approach. Unlike analyses used in previous studies, our approach does not rely on peak measurements and can provide a more sensitive measure of processing delays. Young and old adults (mean ages 22 and 70 years) performed a non-speeded discrimination task between two faces. The phase spectrum of these faces was manipulated parametrically to create pictures that ranged between pure noise (0% phase information) and the undistorted signal (100% phase information), with five intermediate steps. Results: Behavioural 75% correct thresholds were on average lower, and maximum accuracy was higher, in younger than older observers. ERPs from each subject were entered into a single-trial general linear regression model to identify variations in neural activity statistically associated with changes in image structure. The earliest age-related ERP differences occurred in the time window of the N170. Older observers had a significantly stronger N170 in response to noise, but this age difference decreased with increasing phase information. Overall, manipulating image phase information had a greater effect on ERPs from younger observers, which was quantified using a hierarchical modelling approach. Importantly, visual activity was modulated by the same stimulus parameters in younger and older subjects. The fit of the model, indexed by R2, was computed at multiple post-stimulus time points. The time-course of the R2 function showed a significantly slower processing in older observers starting around 120 ms after stimulus onset. This age-related delay increased over time to reach a maximum around 190 ms, at which latency younger observers had around 50 ms time lead over older observers. Conclusion: Using a component-free ERP analysis that provides a precise timing of the visual system sensitivity to image structure, the current study demonstrates that older observers accumulate face information more slowly than younger subjects. Additionally, the N170 appears to be less face-sensitive in older observers
    corecore