917 research outputs found
Energy composition of the Universe: time-independent internal symmetry
The energy composition of the Universe, as emerged from the Type Ia supernova
observations and the WMAP data, looks preposterously complex, -- but only at
the first glance. In fact, its structure proves to be simple and regular. An
analysis in terms of the Friedmann integral enables to recognize a remarkably
simple time-independent covariant robust recipe of the cosmic mix: the
numerical values of the Friedmann integral for vacuum, dark matter, baryons and
radiation are approximately identical. The identity may be treated as a
symmetry relation that unifies cosmic energies into a regular set, a quartet,
with the Friedmann integral as its common genuine time-independent physical
parameter. Such cosmic internal (non-geometrical) symmetry exists whenever
cosmic energies themselves exist in nature. It is most natural for a finite
Universe suggested by the WMAP data. A link to fundamental theory may be found
under the assumption about a special significance of the electroweak energy
scale in both particle physics and cosmology. A freeze-out model developed on
this basis demonstrates that the physical nature of new symmetry might be due
to the interplay between electroweak physics and gravity at the cosmic age of a
few picoseconds. The big `hierarchy number' of particle physics represents the
interplay in the model. This number quantifies the Friedmann integral and gives
also a measure to some other basic cosmological figures and phenomena
associated with new symmetry. In this way, cosmic internal symmetry provides a
common ground for better understanding of old and recent problems that
otherwise seem unrelated; the coincidence of the observed cosmic densities, the
flatness of the co-moving space, the initial perturbations and their amplitude,
the cosmic entropy are among them.Comment: 32 page
Developing a competence framework for cognitive analytic therapy
Objective
This paper describes the development and summarizes the content of a competence framework for delivery of cognitive analytic therapy (CAT).
Design
The framework was developed using the evidence‐based method developed by Roth and Pilling (2008, Behavioural and Cognitive Psychotherapy, 36, 129).
Methods
A review of the CAT outcome literature identified where CAT interventions had evidence of efficacy. Standard texts on CAT were primary sources for details of theory and practice. This process was supported by an expert reference group (ERG). The role of the ERG was to provide professional advice on areas where the evidence base was lacking, but where CAT interventions were commonly used by therapists trained in the model.
Results
A framework was produced and structured in terms of core knowledge, core skills, and meta‐competences (which require therapeutic judgement rather than simple adherence to a treatment protocol).
Conclusions
The framework enables trainees, service users, service managers, and commissioners to better understand a) the core features of CAT and b) what competences need to be in place for CAT to be skilfully delivered in practice.
Practitioner points
It is possible to define the core competences of CAT.
Whilst generic competences are important, there are five CAT‐specific domains of competence.
The CAT‐specific competences reflect the three‐phase structure of the therapy: reformulation, recognition, and revision
Targeted free energy perturbation
A generalization of the free energy perturbation identity is derived, and a
computational strategy based on this result is presented. A simple example
illustrates the efficiency gains that can be achieved with this method.Comment: 8 pages + 1 color figur
Scaling property and peculiar velocity of global monopoles
We investigate the scaling property of global monopoles in the expanding
universe. By directly solving the equations of motion for scalar fields, we
follow the time development of the number density of global monopoles in the
radiation dominated (RD) universe and the matter dominated (MD) universe. It is
confirmed that the global monopole network relaxes into the scaling regime and
the number per hubble volume is a constant irrespective of the cosmic time. The
number density of global monopoles is given by during the RD era and during the MD era. We also examine the peculiar velocity of global
monopoles. For this purpose, we establish a method to measure the peculiar
velocity by use of only the local quantities of the scalar fields. It is found
that during the RD era and during
the MD era. By use of it, a more accurate analytic estimate for the number
density of global monopoles is obtained.Comment: 17 pages, 8 figures, to appear in Phys. Rev.
Leptogenesis, neutrino masses and gauge unification
Leptogenesis is considered in its natural context where Majorana neutrinos
fit in a gauge unification scheme and therefore couple to some extra gauge
bosons. The masses of some of these gauge bosons are expected to be similar to
those of the heavy Majorana particles, and this can have important consequences
for leptogenesis. In fact, the effect can go both ways. Stricter bounds are
obtained on one hand due to the dilution of the CP-violating effect by new
decay and scattering channels, while, in a re-heating scheme, the presence of
gauge couplings facilitates the re-population of the Majorana states. The
latter effect allows in particular for smaller Dirac couplings.Comment: 11pages, 7 figures. v2: definition of the lepton asymmetry corrected,
small numerical changes for the baryon number, conclusion does not change;
typos corrected and references adde
Smooth hybrid inflation in supergravity with a running spectral index and early star formation
It is shown that in a smooth hybrid inflation model in supergravity adiabatic
fluctuations with a running spectral index with \ns >1 on a large scale and
\ns <1 on a smaller scale can be naturally generated, as favored by the
first-year data of WMAP. It is due to the balance between the nonrenormalizable
term in the superpotential and the supergravity effect. However, since smooth
hybrid inflation does not last long enough to reproduce the central value of
observation, we invoke new inflation after the first inflation. Its initial
condition is set dynamically during smooth hybrid inflation and the spectrum of
fluctuations generated in this regime can have an appropriate shape to realize
early star formation as found by WMAP. Hence two new features of WMAP
observations are theoretically explained in a unified manner.Comment: 12 pages, 1 figure, to appear in Phys. Rev.
Genetic differentiation in Scottish populations of the pine beauty moth Panolis flammea (Lepidoptera: Noctuidae)
Pine beauty moth, Panolis flammea (Denis & Schiffermüller), is a recent but persistent pest of lodgepole pine plantations in Scotland, but exists naturally at low levels within remnants and plantations of Scots pine. To test whether separate host races occur in lodgepole and Scots pine stands and to examine colonization dynamics, allozyme, randomly amplified polymorphic DNA (RAPD) and mitochondrial variation were screened within a range of Scottish samples. RAPD analysis indicated limited long distance dispersal (FST = 0.099), and significant isolation by distance (P < 0.05); but that colonization between more proximate populations was often variable, from extensive to limited exchange. When compared with material from Germany, Scottish samples were found to be more diverse and significantly differentiated for all markers. For mtDNA, two highly divergent groups of haplotypes were evident, one group contained both German and Scottish samples and the other was predominantly Scottish. No genetic differentiation was evident between P. flammea populations sampled from different hosts, and no diversity bottleneck was observed in the lodgepole group. Indeed, lodgepole stands appear to have been colonized on multiple occasions from Scots pine sources and neighbouring populations on different hosts are close to panmixia.A.J. Lowe, B.J. Hicks, K. Worley, R.A. Ennos, J.D. Morman, G. Stone and A.D. Wat
The quantum cryptographic switch
We illustrate using a quantum system the principle of a cryptographic switch,
in which a third party (Charlie) can control to a continuously varying degree
the amount of information the receiver (Bob) receives, after the sender (Alice)
has sent her information. Suppose Charlie transmits a Bell state to Alice and
Bob. Alice uses dense coding to transmit two bits to Bob. Only if the 2-bit
information corresponding to choice of Bell state is made available by Charlie
to Bob can the latter recover Alice's information. By varying the information
he gives, Charlie can continuously vary the information recovered by Bob. The
performance of the protocol subjected to the squeezed generalized amplitude
damping channel is considered. We also present a number of practical situations
where a cryptographic switch would be of use.Comment: 7 pages, 4 Figure
String Imprints from a Pre-inflationary Era
We derive the equations governing the dynamics of cosmic strings in a flat
anisotropic universe of Bianchi type I and study the evolution of simple cosmic
string loop solutions. We show that the anisotropy of the background can have a
characteristic effect in the loop motion. We discuss some cosmological
consequences of these findings and, by extrapolating our results to cosmic
string networks, we comment on their ability to survive an inflationary epoch,
and hence be a possible fossil remnant (still visible today) of an anisotropic
phase in the very early universe.Comment: 5 pages, 3 figure
The nearly Newtonian regime in Non-Linear Theories of Gravity
The present paper reconsiders the Newtonian limit of models of modified
gravity including higher order terms in the scalar curvature in the
gravitational action. This was studied using the Palatini variational principle
in [Meng X. and Wang P.: Gen. Rel. Grav. {\bf 36}, 1947 (2004)] and
[Dom\'inguez A. E. and Barraco D. E.: Phys. Rev. D {\bf 70}, 043505 (2004)]
with contradicting results. Here a different approach is used, and problems in
the previous attempts are pointed out. It is shown that models with negative
powers of the scalar curvature, like the ones used to explain the present
accelerated expansion, as well as their generalization which include positive
powers, can give the correct Newtonian limit, as long as the coefficients of
these powers are reasonably small. Some consequences of the performed analysis
seem to raise doubts for the way the Newtonian limit was derived in the purely
metric approach of fourth order gravity [Dick R.: Gen. Rel. Grav. {\bf 36}, 217
(2004)]. Finally, we comment on a recent paper [Olmo G. J.: Phys. Rev. D {\bf
72}, 083505 (2005)] in which the problem of the Newtonian limit of both the
purely metric and the Palatini formalism is discussed, using the equivalent
Brans--Dicke theory, and with which our results partly disagree.Comment: typos corrected, replaced to match published versio
- …