4,342 research outputs found
Enabling Data-Driven Transportation Safety Improvements in Rural Alaska
Safety improvements require funding. A clear need must be demonstrated to secure funding. For transportation safety, data, especially data about past crashes, is the usual method of demonstrating need. However, in rural locations, such data is often not available, or is not in a form amenable to use in funding applications. This research aids rural entities, often federally recognized tribes and small villages acquire data needed for funding applications. Two aspects of work product are the development of a traffic counting application for an iPad or similar device, and a review of the data requirements of the major transportation funding agencies. The traffic-counting app, UAF Traffic, demonstrated its ability to count traffic and turning movements for cars and trucks, as well as ATVs, snow machines, pedestrians, bicycles, and dog sleds. The review of the major agencies demonstrated that all the likely funders would accept qualitative data and Road Safety Audits. However, quantitative data, if it was available, was helpful
Annotation of Heterogenous Media Using OntoMedia
While ontologies exist for the annotation of monomedia, interoperability between these schemes is an important issue. The OntoMedia ontology consists of a generic core, capable of representing a diverse range of media, as well as extension ontologies to focus on specific formats. This paper provides an overview of the OntoMedia ontologies, together with a detailed case study when applied to video, a scripted form, and an associated short story
Entanglement Patterns in Mutually Unbiased Basis Sets for N Prime-state Particles
A few simply-stated rules govern the entanglement patterns that can occur in
mutually unbiased basis sets (MUBs), and constrain the combinations of such
patterns that can coexist (ie, the stoichiometry) in full complements of p^N+1
MUBs. We consider Hilbert spaces of prime power dimension (as realized by
systems of N prime-state particles, or qupits), where full complements are
known to exist, and we assume only that MUBs are eigenbases of generalized
Pauli operators, without using a particular construction. The general rules
include the following: 1) In any MUB, a particular qupit appears either in a
pure state, or totally entangled, and 2) in any full MUB complement, each qupit
is pure in p+1 bases (not necessarily the same ones), and totally entangled in
the remaining p^N-p. It follows that the maximum number of product bases is
p+1, and when this number is realized, all remaining p^N-p bases in the
complement are characterized by the total entanglement of every qupit. This
"standard distribution" is inescapable for two qupits (of any p), where only
product and generalized Bell bases are admissible MUB types. This and the
following results generalize previous results for qubits and qutrits. With
three qupits there are three MUB types, and a number of combinations (p+2) are
possible in full complements. With N=4, there are 6 MUB types for p=2, but new
MUB types become possible with larger p, and these are essential to the
realization of full complements. With this example, we argue that new MUB
types, showing new entanglement characteristics, should enter with every step
in N, and when N is a prime plus 1, also at critical p values, p=N-1. Such MUBs
should play critical roles in filling complements.Comment: 27 pages, one figure, to be submitted to Physical Revie
Meconium aspiration syndrome
This issue of eMedRef provides information to clinicians on the pathophysiology, diagnosis, and therapeutics of meconium aspiration syndrome
- …