29,092 research outputs found
Building multiparticle states with teleportation
We describe a protocol which can be used to generate any N-partite pure
quantum state using Einstein-Podolsky-Rosen (EPR) pairs. This protocol employs
only local operations and classical communication between the N parties
(N-LOCC). In particular, we rely on quantum data compression and teleportation
to create the desired state. This protocol can be used to obtain upper bounds
for the bipartite entanglement of formation of an arbitrary N-partite pure
state, in the asymptotic limit of many copies. We apply it to a few
multipartite states of interest, showing that in some cases it is not optimal.
Generalizations of the protocol are developed which are optimal for some of the
examples we consider, but which may still be inefficient for arbitrary states.Comment: 11 pages, 1 figure. Version 2 contains an example for which protocol
P3 is better than protocol P2. Correction to references in version
The Parity Bit in Quantum Cryptography
An -bit string is encoded as a sequence of non-orthogonal quantum states.
The parity bit of that -bit string is described by one of two density
matrices, and , both in a Hilbert space of
dimension . In order to derive the parity bit the receiver must
distinguish between the two density matrices, e.g., in terms of optimal mutual
information. In this paper we find the measurement which provides the optimal
mutual information about the parity bit and calculate that information. We
prove that this information decreases exponentially with the length of the
string in the case where the single bit states are almost fully overlapping. We
believe this result will be useful in proving the ultimate security of quantum
crytography in the presence of noise.Comment: 19 pages, RevTe
Mixedness and teleportation
We show that on exceeding a certain degree of mixedness (as quantified by the
von Neumann entropy), entangled states become useless for teleporatation. By
increasing the dimension of the entangled systems, this entropy threshold can
be made arbitrarily close to maximal. This entropy is found to exceed the
entropy threshold sufficient to ensure the failure of dense coding.Comment: 6 pages, no figure
Physical realizations of quantum operations
Quantum operations (QO) describe any state change allowed in quantum
mechanics, such as the evolution of an open system or the state change due to a
measurement. We address the problem of which unitary transformations and which
observables can be used to achieve a QO with generally different input and
output Hilbert spaces. We classify all unitary extensions of a QO, and give
explicit realizations in terms of free-evolution direct-sum dilations and
interacting tensor-product dilations. In terms of Hilbert space dimensionality
the free-evolution dilations minimize the physical resources needed to realize
the QO, and for this case we provide bounds for the dimension of the ancilla
space versus the rank of the QO. The interacting dilations, on the other hand,
correspond to the customary ancilla-system interaction realization, and for
these we derive a majorization relation which selects the allowed unitary
interactions between system and ancilla.Comment: 8 pages, no figures. Accepted for publication on Phys. Rev.
A classical analogue of entanglement
We show that quantum entanglement has a very close classical analogue, namely
secret classical correlations. The fundamental analogy stems from the behavior
of quantum entanglement under local operations and classical communication and
the behavior of secret correlations under local operations and public
communication. A large number of derived analogies follow. In particular
teleportation is analogous to the one-time-pad, the concept of ``pure state''
exists in the classical domain, entanglement concentration and dilution are
essentially classical secrecy protocols, and single copy entanglement
manipulations have such a close classical analog that the majorization results
are reproduced in the classical setting. This analogy allows one to import
questions from the quantum domain into the classical one, and vice-versa,
helping to get a better understanding of both. Also, by identifying classical
aspects of quantum entanglement it allows one to identify those aspects of
entanglement which are uniquely quantum mechanical.Comment: 13 pages, references update
Nonlocal Gate Of Quantum Network Via Cavity Quantum Electrodynamics
We propose an experimentally feasible scheme to realize the nonlocal gate
between two different quantum network nodes. With an entanglement-qubit (ebit)
acts as a quantum channel, our scheme is resistive to actual environment noise
and can get high fidelity in current cavity quantum electrodynamics (C-QED)
system.Comment: 5 pages, 3 figures, 1 tabl
Quantum privacy amplification and the security of quantum cryptography over noisy channels
Existing quantum cryptographic schemes are not, as they stand, operable in
the presence of noise on the quantum communication channel. Although they
become operable if they are supplemented by classical privacy-amplification
techniques, the resulting schemes are difficult to analyse and have not been
proved secure. We introduce the concept of quantum privacy amplification and a
cryptographic scheme incorporating it which is provably secure over a noisy
channel. The scheme uses an `entanglement purification' procedure which,
because it requires only a few quantum Controlled-Not and single-qubit
operations, could be implemented using technology that is currently being
developed. The scheme allows an arbitrarily small bound to be placed on the
information that any eavesdropper may extract from the encrypted message.Comment: 13 pages, Latex including 2 postcript files included using psfig
macro
Mixed State Entanglement and Quantum Error Correction
Entanglement purification protocols (EPP) and quantum error-correcting codes
(QECC) provide two ways of protecting quantum states from interaction with the
environment. In an EPP, perfectly entangled pure states are extracted, with
some yield D, from a mixed state M shared by two parties; with a QECC, an arbi-
trary quantum state can be transmitted at some rate Q through a
noisy channel without degradation. We prove that an EPP involving one-
way classical communication and acting on mixed state (obtained
by sharing halves of EPR pairs through a channel ) yields a QECC on
with rate , and vice versa. We compare the amount of entanglement
E(M) required to prepare a mixed state M by local actions with the amounts
and that can be locally distilled from it by EPPs using one-
and two-way classical communication respectively, and give an exact expression
for when is Bell-diagonal. While EPPs require classical communica-
tion, QECCs do not, and we prove Q is not increased by adding one-way classical
communication. However, both D and Q can be increased by adding two-way com-
munication. We show that certain noisy quantum channels, for example a 50%
depolarizing channel, can be used for reliable transmission of quantum states
if two-way communication is available, but cannot be used if only one-way com-
munication is available. We exhibit a family of codes based on universal hash-
ing able toachieve an asymptotic (or ) of 1-S for simple noise models,
where S is the error entropy. We also obtain a specific, simple 5-bit single-
error-correcting quantum block code. We prove that {\em iff} a QECC results in
high fidelity for the case of no error the QECC can be recast into a form where
the encoder is the matrix inverse of the decoder.Comment: Resubmission with various corrections and expansions. See also
http://vesta.physics.ucla.edu/~smolin/ for related papers and information. 82
pages latex including 19 postscript figures included using psfig macro
Probabilistic teleportation and entanglement matching
Teleportation may be taken as sending and extracting quantum information
through quantum channels. In this report, it is shown that to get the maximal
probability of exact teleportation through partially entangled quantum
channels, the sender (Alice) need only to operate a measurement which satisfy
an ``entanglement matching'' to this channel. An optimal strategy is also
provided for the receiver (Bob) to extract the quantum information by adopting
general evolutions.Comment: 3.5 pages, No figure
Local permutations of products of Bell states and entanglement distillation
We present new algorithms for mixed-state multi-copy entanglement
distillation for pairs of qubits. Our algorithms perform significantly better
than the best known algorithms. Better algorithms can be derived that are tuned
for specific initial states. The new algorithms are based on a characterization
of the group of all locally realizable permutations of the 4^n possible tensor
products of n Bell states.Comment: 6 pages, 1 figur
- …