2,015 research outputs found
Environment and classical channels in categorical quantum mechanics
We present a both simple and comprehensive graphical calculus for quantum
computing. In particular, we axiomatize the notion of an environment, which
together with the earlier introduced axiomatic notion of classical structure
enables us to define classical channels, quantum measurements and classical
control. If we moreover adjoin the earlier introduced axiomatic notion of
complementarity, we obtain sufficient structural power for constructive
representation and correctness derivation of typical quantum informatic
protocols.Comment: 26 pages, many pics; this third version has substantially more
explanations than previous ones; Journal reference is of short 14 page
version; Proceedings of the 19th EACSL Annual Conference on Computer Science
Logic (CSL), Lecture Notes in Computer Science 6247, Springer-Verlag (2010
Evolution of a global string network in a matter dominated universe
We evolve the network of global strings in the matter-dominated universe by
means of numerical simulations. The existence of the scaling solution is
confirmed as in the radiation-dominated universe but the scaling parameter
takes a slightly smaller value, , which is
defined as with the energy density of
global strings and the string tension per unit length. The change of
from the radiation to the matter-dominated universe is consistent with
that obtained by Albrecht and Turok by use of the one-scale model. We also
study the loop distribution function and find that it can be well fitted with
that predicted by the one-scale model, where the number density of
the loop with the length is given by with and . Thus, the evolution of the
global string network in the matter-dominated universe can be well described by
the one-scale model as in the radiation-dominated universe.Comment: 10 pages, 5 figure
A Comprehensive Archival Search for Counterparts to Ultra-Compact High Velocity Clouds: Five Local Volume Dwarf Galaxies
We report five Local Volume dwarf galaxies (two of which are presented here
for the first time) uncovered during a comprehensive archival search for
optical counterparts to ultra-compact high velocity clouds (UCHVCs). The UCHVC
population of HI clouds are thought to be candidate gas-rich, low mass halos at
the edge of the Local Group and beyond, but no comprehensive search for stellar
counterparts to these systems has been presented. Careful visual inspection of
all publicly available optical and ultraviolet imaging at the position of the
UCHVCs revealed six blue, diffuse counterparts with a morphology consistent
with a faint dwarf galaxy beyond the Local Group. Optical spectroscopy of all
six candidate dwarf counterparts show that five have an H-derived
velocity consistent with the coincident HI cloud, confirming their association,
the sixth diffuse counterpart is likely a background object. The size and
luminosity of the UCHVC dwarfs is consistent with other known Local Volume
dwarf irregular galaxies. The gas fraction () of the five
dwarfs are generally consistent with that of dwarf irregular galaxies in the
Local Volume, although ALFALFA-Dw1 (associated with ALFALFA UCHVC
HVC274.68+74.70123) has a very high 40. Despite the
heterogenous nature of our search, we demonstrate that the current dwarf
companions to UCHVCs are at the edge of detectability due to their low surface
brightness, and that deeper searches are likely to find more stellar systems.
If more sensitive searches do not reveal further stellar counterparts to
UCHVCs, then the dearth of such systems around the Local Group may be in
conflict with CDM simulations.Comment: 18 pages, 4 tables, 4 figures, ApJ Accepte
Using of small-scale quantum computers in cryptography with many-qubit entangled states
We propose a new cryptographic protocol. It is suggested to encode
information in ordinary binary form into many-qubit entangled states with the
help of a quantum computer. A state of qubits (realized, e.g., with photons) is
transmitted through a quantum channel to the addressee, who applies a quantum
computer tuned to realize the inverse unitary transformation decoding of the
message. Different ways of eavesdropping are considered, and an estimate of the
time needed for determining the secret unitary transformation is given. It is
shown that using even small quantum computers can serve as a basis for very
efficient cryptographic protocols. For a suggested cryptographic protocol, the
time scale on which communication can be considered secure is exponential in
the number of qubits in the entangled states and in the number of gates used to
construct the quantum network
Scaling Property of the global string in the radiation dominated universe
We investigate the evolution of the global string network in the radiation
dominated universe by use of numerical simulations in 3+1 dimensions. We find
that the global string network settles down to the scaling regime where the
energy density of global strings, , is given by with the string tension per unit length and the scaling parameter,
, irrespective of the cosmic time. We also find that the
loop distribution function can be fitted with that predicted by the so-called
one scale model. Concretely, the number density, , of the loop with
the length, , is given by
where and is related with the Nambu-Goldstone(NG)
boson radiation power from global strings, , as with
. Therefore, the loop production function also scales and
the typical scale of produced loops is nearly the horizon distance. Thus, the
evolution of the global string network in the radiation dominated universe can
be well described by the one scale model in contrast with that of the local
string network.Comment: 18 pages, 9 figures, to appear in Phys. Rev.
Gravitational Lensing Signature of Long Cosmic Strings
The gravitational lensing by long, wiggly cosmic strings is shown to produce
a large number of lensed images of a background source. In addition to pairs of
images on either side of the string, a number of small images outline the
string due to small-scale structure on the string. This image pattern could
provide a highly distinctive signature of cosmic strings. Since the optical
depth for multiple imaging of distant quasar sources by long strings may be
comparable to that by galaxies, these image patterns should be clearly
observable in the next generation of redshift surveys such as the Sloan Digital
Sky Survey.Comment: 4 pages, revtex with 3 postscript figures include
The Satellite Luminosity Function of M101 into the Ultra-Faint Dwarf Galaxy Regime
We have obtained deep Hubble Space Telescope (HST) imaging of four faint and
ultra-faint dwarf galaxy candidates in the vicinity of M101 - Dw21, Dw22, Dw23
and Dw35, originally discovered by Bennet et al. (2017). Previous distance
estimates using the surface brightness fluctuation technique have suggested
that these four dwarf candidates are the only remaining viable M101 satellites
identified in ground based imaging out to the virial radius of M101 (D~250
kpc). Advanced Camera for Surveys imaging of all four dwarf candidates shows no
associated resolved stellar populations, indicating that they are thus
background galaxies. We confirm this by generating simulated HST color
magnitude diagrams of similar brightness dwarfs at the distance of M101. Our
targets would have displayed clear, resolved red giant branches with dozens of
stars if they had been associated with M101. With this information, we
construct a satellite luminosity function for M101, which is 90% complete to
M_V=-7.7 mag and 50% complete to M_V=-7.4 mag, that extends into the
ultra-faint dwarf galaxy regime. The M101 system is remarkably poor in
satellites in comparison to the Milky Way and M31, with only eight satellites
down to an absolute magnitude of M_V=-7.7 mag, compared to the 14 and 26 seen
in the Milky Way and M31, respectively. Further observations of Milky Way
analogs are needed to understand the halo-to-halo scatter in their faint
satellite systems, and connect them with expectations from cosmological
simulations.Comment: 9 Pages, 3 Figures, 1 Table, Accepted by ApJ
Observing Long Cosmic Strings Through Gravitational Lensing
We consider the gravitational lensing produced by long cosmic strings formed
in a GUT scale phase transition. We derive a formula for the deflection of
photons which pass near the strings that reduces to an integral over the light
cone projection of the string configuration plus constant terms which are not
important for lensing. Our strings are produced by performing numerical
simulations of cosmic string networks in flat, Minkowski space ignoring the
effects of cosmological expansion. These strings have more small scale
structure than those from an expanding universe simulation - fractal dimension
1.3 for Minkowski versus 1.1 for expanding - but share the same qualitative
features. Lensing simulations show that for both point-like and extended
objects, strings produce patterns unlike more traditional lenses, and, in
particluar, the kinks in strings tend to generate demagnified images which
reside close to the string. Thus lensing acts as a probe of the small scale
structure of a string. Estimates of lensing probablity suggest that for string
energy densities consistant with string seeded structure formation, on the
order of tens of string lenses should be observed in the Sloan Digital Sky
Survey quasar catalog. We propose a search strategy in which string lenses
would be identified in the SDSS quasar survey, and the string nature of the
lens can be confirmed by the observation of nearby high redshift galaxies which
are also be lensed by the string.Comment: 24 pages revtex with 12 postscript firgure
Entanglement of electrons in interacting molecules
Quantum entanglement is a concept commonly used with reference to the
existence of certain correlations in quantum systems that have no classical
interpretation. It is a useful resource to enhance the mutual information of
memory channels or to accelerate some quantum processes as, for example, the
factorization in Shor's Algorithm. Moreover, entanglement is a physical
observable directly measured by the von Neumann entropy of the system. We have
used this concept in order to give a physical meaning to the electron
correlation energy in systems of interacting electrons. The electronic
correlation is not directly observable, since it is defined as the difference
between the exact ground state energy of the many--electrons Schroedinger
equation and the Hartree--Fock energy. We have calculated the correlation
energy and compared with the entanglement, as functions of the nucleus--nucleus
separation using, for the hydrogen molecule, the Configuration Interaction
method. Then, in the same spirit, we have analyzed a dimer of ethylene, which
represents the simplest organic conjugate system, changing the relative
orientation and distance of the molecules, in order to obtain the configuration
corresponding to maximum entanglement.Comment: 15 pages, 7 figures, standard late
- âŠ