2,185 research outputs found

    Le refus d'aide: déni de justice

    Get PDF

    Signal Decomposition Using Masked Proximal Operators

    Full text link
    We consider the well-studied problem of decomposing a vector time series signal into components with different characteristics, such as smooth, periodic, nonnegative, or sparse. We describe a simple and general framework in which the components are defined by loss functions (which include constraints), and the signal decomposition is carried out by minimizing the sum of losses of the components (subject to the constraints). When each loss function is the negative log-likelihood of a density for the signal component, this framework coincides with maximum a posteriori probability (MAP) estimation; but it also includes many other interesting cases. Summarizing and clarifying prior results, we give two distributed optimization methods for computing the decomposition, which find the optimal decomposition when the component class loss functions are convex, and are good heuristics when they are not. Both methods require only the masked proximal operator of each of the component loss functions, a generalization of the well-known proximal operator that handles missing entries in its argument. Both methods are distributed, i.e., handle each component separately. We derive tractable methods for evaluating the masked proximal operators of some loss functions that, to our knowledge, have not appeared in the literature.Comment: The manuscript has 61 pages, 22 figures and 2 tables. Also hosted at https://web.stanford.edu/~boyd/papers/sig_decomp_mprox.html. For code, see https://github.com/cvxgrp/signal-decompositio

    Gravitational-Wave Stochastic Background Detection with Resonant-Mass Detectors

    Get PDF
    In this paper we discuss how the standard optimal Wiener filter theory can be applied, within a linear approximation, to the detection of an isotropic stochastic gravitational-wave background with two or more detectors. We apply then the method to the AURIGA-NAUTILUS pair of ultra low temperature bar detectors, near to operate in coincidence in Italy, obtaining an estimate for the sensitivity to the background spectral density of $\simeq 10^{-49}\ Hz^{-1},thatconvertstoanenergydensityperunitlogarithmicfrequencyof, that converts to an energy density per unit logarithmic frequency of \simeq 8\times10^{-5}\times\rho_cwith with \rho_c\simeq1.9 \times 10^{-26}\ kg/m^3theclosuredensityoftheUniverse.WealsoshowthatbyaddingtheVIRGOinterferometricdetectorunderconstructioninItalytothearray,andbyproperlyreorientingthedetectors,onecanreachasensitivityof the closure density of the Universe. We also show that by adding the VIRGO interferometric detector under construction in Italy to the array, and by properly re- orienting the detectors, one can reach a sensitivity of \simeq 6 \times10^{-5}\times\rho_c.WethencalculatethatthepairformedbyVIRGOandonelargemasssphericaldetectorproperlylocatedinoneofthenearbyavailablesitesinItalycanreahasensitivityof. We then calculate that the pair formed by VIRGO and one large mass spherical detector properly located in one of the nearby available sites in Italy can reah a sensitivity of \simeq 2\times10^{-5}\times \rho_cwhileapairofsuchsphericaldetectorsatthesamesitesofAURIGAandNAUTILUScanachievesensitivitiesof while a pair of such spherical detectors at the same sites of AURIGA and NAUTILUS can achieve sensitivities of \simeq 2 \times10^{-6}\rho_c$.Comment: 32 pages, postscript file, also available at http://axln01.lnl.infn.it/reports/stoch.htm

    Change of voice in puberty in choir girls

    Get PDF

    A Comprehensive Archival Search for Counterparts to Ultra-Compact High Velocity Clouds: Five Local Volume Dwarf Galaxies

    Get PDF
    We report five Local Volume dwarf galaxies (two of which are presented here for the first time) uncovered during a comprehensive archival search for optical counterparts to ultra-compact high velocity clouds (UCHVCs). The UCHVC population of HI clouds are thought to be candidate gas-rich, low mass halos at the edge of the Local Group and beyond, but no comprehensive search for stellar counterparts to these systems has been presented. Careful visual inspection of all publicly available optical and ultraviolet imaging at the position of the UCHVCs revealed six blue, diffuse counterparts with a morphology consistent with a faint dwarf galaxy beyond the Local Group. Optical spectroscopy of all six candidate dwarf counterparts show that five have an Hα\alpha-derived velocity consistent with the coincident HI cloud, confirming their association, the sixth diffuse counterpart is likely a background object. The size and luminosity of the UCHVC dwarfs is consistent with other known Local Volume dwarf irregular galaxies. The gas fraction (MHI/MstarM_{HI}/M_{star}) of the five dwarfs are generally consistent with that of dwarf irregular galaxies in the Local Volume, although ALFALFA-Dw1 (associated with ALFALFA UCHVC HVC274.68+74.70-123) has a very high MHI/MstarM_{HI}/M_{star}\sim40. Despite the heterogenous nature of our search, we demonstrate that the current dwarf companions to UCHVCs are at the edge of detectability due to their low surface brightness, and that deeper searches are likely to find more stellar systems. If more sensitive searches do not reveal further stellar counterparts to UCHVCs, then the dearth of such systems around the Local Group may be in conflict with Λ\LambdaCDM simulations.Comment: 18 pages, 4 tables, 4 figures, ApJ Accepte

    Using of small-scale quantum computers in cryptography with many-qubit entangled states

    Full text link
    We propose a new cryptographic protocol. It is suggested to encode information in ordinary binary form into many-qubit entangled states with the help of a quantum computer. A state of qubits (realized, e.g., with photons) is transmitted through a quantum channel to the addressee, who applies a quantum computer tuned to realize the inverse unitary transformation decoding of the message. Different ways of eavesdropping are considered, and an estimate of the time needed for determining the secret unitary transformation is given. It is shown that using even small quantum computers can serve as a basis for very efficient cryptographic protocols. For a suggested cryptographic protocol, the time scale on which communication can be considered secure is exponential in the number of qubits in the entangled states and in the number of gates used to construct the quantum network

    Gravitational Lensing Signature of Long Cosmic Strings

    Get PDF
    The gravitational lensing by long, wiggly cosmic strings is shown to produce a large number of lensed images of a background source. In addition to pairs of images on either side of the string, a number of small images outline the string due to small-scale structure on the string. This image pattern could provide a highly distinctive signature of cosmic strings. Since the optical depth for multiple imaging of distant quasar sources by long strings may be comparable to that by galaxies, these image patterns should be clearly observable in the next generation of redshift surveys such as the Sloan Digital Sky Survey.Comment: 4 pages, revtex with 3 postscript figures include

    Scaling Property of the global string in the radiation dominated universe

    Get PDF
    We investigate the evolution of the global string network in the radiation dominated universe by use of numerical simulations in 3+1 dimensions. We find that the global string network settles down to the scaling regime where the energy density of global strings, ρs\rho_{s}, is given by ρs=ξμ/t2\rho_{s} = \xi \mu / t^2 with μ\mu the string tension per unit length and the scaling parameter, ξ(0.91.3)\xi \sim (0.9-1.3), irrespective of the cosmic time. We also find that the loop distribution function can be fitted with that predicted by the so-called one scale model. Concretely, the number density, nl(t)n_{l}(t), of the loop with the length, ll, is given by nl(t)=ν/[t3/2(l+κt)5/2]n_{l}(t) = \nu/[t^{3/2} (l + \kappa t)^{5/2}] where ν0.0865\nu \sim 0.0865 and κ\kappa is related with the Nambu-Goldstone(NG) boson radiation power from global strings, PP, as P=κμP = \kappa \mu with κ0.535\kappa \sim 0.535. Therefore, the loop production function also scales and the typical scale of produced loops is nearly the horizon distance. Thus, the evolution of the global string network in the radiation dominated universe can be well described by the one scale model in contrast with that of the local string network.Comment: 18 pages, 9 figures, to appear in Phys. Rev.

    Entanglement of electrons in interacting molecules

    Get PDF
    Quantum entanglement is a concept commonly used with reference to the existence of certain correlations in quantum systems that have no classical interpretation. It is a useful resource to enhance the mutual information of memory channels or to accelerate some quantum processes as, for example, the factorization in Shor's Algorithm. Moreover, entanglement is a physical observable directly measured by the von Neumann entropy of the system. We have used this concept in order to give a physical meaning to the electron correlation energy in systems of interacting electrons. The electronic correlation is not directly observable, since it is defined as the difference between the exact ground state energy of the many--electrons Schroedinger equation and the Hartree--Fock energy. We have calculated the correlation energy and compared with the entanglement, as functions of the nucleus--nucleus separation using, for the hydrogen molecule, the Configuration Interaction method. Then, in the same spirit, we have analyzed a dimer of ethylene, which represents the simplest organic conjugate system, changing the relative orientation and distance of the molecules, in order to obtain the configuration corresponding to maximum entanglement.Comment: 15 pages, 7 figures, standard late

    Evolution of a global string network in a matter dominated universe

    Get PDF
    We evolve the network of global strings in the matter-dominated universe by means of numerical simulations. The existence of the scaling solution is confirmed as in the radiation-dominated universe but the scaling parameter ξ\xi takes a slightly smaller value, ξ0.6±0.1\xi \simeq 0.6 \pm 0.1, which is defined as ξ=ρst2/μ\xi = \rho_{s} t^{2} / \mu with ρs\rho_{s} the energy density of global strings and μ\mu the string tension per unit length. The change of ξ\xi from the radiation to the matter-dominated universe is consistent with that obtained by Albrecht and Turok by use of the one-scale model. We also study the loop distribution function and find that it can be well fitted with that predicted by the one-scale model, where the number density nl(t)n_{l}(t) of the loop with the length ll is given by nl(t)=ν/[t2(l+κt)2]n_{l}(t) = \nu/[t^2 (l + \kappa t)^2] with ν0.040\nu \sim 0.040 and κ0.48\kappa \sim 0.48. Thus, the evolution of the global string network in the matter-dominated universe can be well described by the one-scale model as in the radiation-dominated universe.Comment: 10 pages, 5 figure
    corecore