9 research outputs found

    Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility

    Get PDF
    A series of cryogenic, layered deuterium-tritium (DT) implosions have produced, for the first time, fusion energy output twice the peak kinetic energy of the imploding shell. These experiments at the National Ignition Facility utilized high density carbon ablators with a three-shock laser pulse (1.5 MJ in 7.5 ns) to irradiate low gas-filled (0.3  mg/cc of helium) bare depleted uranium hohlraums, resulting in a peak hohlraum radiative temperature ∼290  eV. The imploding shell, composed of the nonablated high density carbon and the DT cryogenic layer, is, thus, driven to velocity on the order of 380  km/s resulting in a peak kinetic energy of ∼21  kJ, which once stagnated produced a total DT neutron yield of 1.9×10¹⁶ (shot N170827) corresponding to an output fusion energy of 54 kJ. Time dependent low mode asymmetries that limited further progress of implosions have now been controlled, leading to an increased compression of the hot spot. It resulted in hot spot areal density (ρr∼0.3  g/cm²) and stagnation pressure (∼360  Gbar) never before achieved in a laboratory experiment

    A SmallSat Concept to Resolve Diurnal and Vertical Variations of Aerosols, Clouds, and Boundary Layer Height

    No full text
    International audienceA SmallSat mission concept is formulated here to carry out Time-varying Optical Measurements of Clouds and Aerosol Transport (TOMCAT) from space while embracing low-cost opportunities enabled by the revolution in Earth science observation technologies. TOMCAT's "around-the-clock" measurements will provide needed insights and strong synergy with existing Earth observation satellites to 1) statistically resolve diurnal and vertical variation of cirrus cloud properties (key to Earth's radiation budget), 2) determine the impacts of regional and seasonal planetary boundary layer (PBL) diurnal variation on surface air quality and low-level cloud distributions, and 3) characterize smoke and dust emission processes impacting their long-range transport on the subseasonal to seasonal time scales. Clouds, aerosol particles, and the PBL play critical roles in Earth's climate system at multiple spatiotemporal scales. Yet their vertical variations as a function of local time are poorly measured from space. Active sensors for profiling the atmosphere typically utilize sun-synchronous low-Earth orbits (LEO) with rather limited temporal and spatial coverage, inhibiting the characterization of spatiotemporal variability. Pairing compact active lidar and passive multiangle remote sensing technologies from an inclined LEO platform enables measurements of the diurnal and vertical variability of aerosols, clouds, and aerosol-mixing-layer (or PBL) height in tropical-to-midlatitude regions where most of the world's population resides. TOMCAT is conceived to bring potential societal benefits by delivering its data products in near-real time and offering on-demand hazard-monitoring capabilities to profile fire injection of smoke particles, the frontal lofting of dust particles, and the eruptive rise of volcanic plumes

    Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facility

    No full text
    Spherically expanding radiative shock waves have been observed from inertially confined implosion experiments at the National Ignition Facility. In these experiments, a spherical fusion target, initially 2 mm in diameter, is compressed via the pressure induced from the ablation of the outer target surface. At the peak compression of the capsule, x-ray and nuclear diagnostics indicate the formation of a central core, with a radius and ion temperature of ∼20 μm and ∼ 2 keV, respectively. This central core is surrounded by a cooler compressed shell of deuterium-tritium fuel that has an outer radius of ∼40 μm and a density of >500 g/cm3. Using inputs from multiple diagnostics, the peak pressure of the compressed core has been inferred to be of order 100 Gbar for the implosions discussed here. The shock front, initially located at the interface between the high pressure compressed fuel shell and surrounding in-falling low pressure ablator plasma, begins to propagate outwards after peak compression has been reached. Approximately 200 ps after peak compression, a ring of x-ray emission created by the limb-brightening of a spherical shell of shock-heated matter is observed to appear at a radius of ∼100 μm. Hydrodynamic simulations, which model the experiment and include radiation transport, indicate that the sudden appearance of this emission occurs as the post-shock material temperature increases and upstream density decreases, over a scale length of ∼10 μm, as the shock propagates into the lower density (∼1 g/cc), hot (∼250 eV) plasma that exists at the ablation front. The expansion of the shock-heated matter is temporally and spatially resolved and indicates a shock expansion velocity of ∼300 km/s in the laboratory frame. The magnitude and temporal evolution of the luminosity produced from the shock-heated matter was measured at photon energies between 5.9 and 12.4 keV. The observed radial shock expansion, as well as the magnitude and temporal evolution of the luminosity from the shock-heated matter, is consistent with 1-D radiation hydrodynamic simulations. Analytic estimates indicate that the radiation energy flux from the shock-heated matter is of the same order as the in-flowing material energy flux, and suggests that this radiation energy flux modifies the shock front structure. Simulations support these estimates and show the formation of a radiative shock, with a precursor that raises the temperature ahead of the shock front, a sharp μm -scale thick spike in temperature at the shock front, followed by a post-shock cooling layer

    Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facility

    No full text
    Spherically expanding radiative shock waves have been observed from inertially confined implosion experiments at the National Ignition Facility. In these experiments, a spherical fusion target, initially 2 mm in diameter, is compressed via the pressure induced from the ablation of the outer target surface. At the peak compression of the capsule, x-ray and nuclear diagnostics indicate the formation of a central core, with a radius and ion temperature of ∼20 μm and ∼ 2 keV, respectively. This central core is surrounded by a cooler compressed shell of deuterium-tritium fuel that has an outer radius of ∼40 μm and a density of >500 g/cm3. Using inputs from multiple diagnostics, the peak pressure of the compressed core has been inferred to be of order 100 Gbar for the implosions discussed here. The shock front, initially located at the interface between the high pressure compressed fuel shell and surrounding in-falling low pressure ablator plasma, begins to propagate outwards after peak compression has been reached. Approximately 200 ps after peak compression, a ring of x-ray emission created by the limb-brightening of a spherical shell of shock-heated matter is observed to appear at a radius of ∼100 μm. Hydrodynamic simulations, which model the experiment and include radiation transport, indicate that the sudden appearance of this emission occurs as the post-shock material temperature increases and upstream density decreases, over a scale length of ∼10 μm, as the shock propagates into the lower density (∼1 g/cc), hot (∼250 eV) plasma that exists at the ablation front. The expansion of the shock-heated matter is temporally and spatially resolved and indicates a shock expansion velocity of ∼300 km/s in the laboratory frame. The magnitude and temporal evolution of the luminosity produced from the shock-heated matter was measured at photon energies between 5.9 and 12.4 keV. The observed radial shock expansion, as well as the magnitude and temporal evolution of the luminosity from the shock-heated matter, is consistent with 1-D radiation hydrodynamic simulations. Analytic estimates indicate that the radiation energy flux from the shock-heated matter is of the same order as the in-flowing material energy flux, and suggests that this radiation energy flux modifies the shock front structure. Simulations support these estimates and show the formation of a radiative shock, with a precursor that raises the temperature ahead of the shock front, a sharp μ m-scale thick spike in temperature at the shock front, followed by a post-shock cooling layer. © 2013 AIP Publishing LLC

    Hohlraum energetics scaling to 520 TW on the National Ignition Facility

    No full text
    Indirect drive experiments have now been carried out with laser powers and energies up to 520 TW and 1.9 MJ. These experiments show that the energy coupling to the target is nearly constant at 84% ± 3% over a wide range of laser parameters from 350 to 520 TW and 1.2 to 1.9 MJ. Experiments at 520 TW with depleted uranium hohlraums achieve radiation temperatures of ∼330 ± 4 eV, enough to drive capsules 20 μm thicker than the ignition point design to velocities near the ignition goal of 370 km/s. A series of three symcap implosion experiments with nearly identical target, laser, and diagnostics configurations show the symmetry and drive are reproducible at the level of ±8.5% absolute and ±2% relative, respectively

    Postoperative Management

    No full text
    corecore