11 research outputs found

    Structure–activity relationships and the cytotoxic effects of novel diterpenoid alkaloid derivatives against A549 human lung carcinoma cells

    Get PDF
    The cytotoxicity of three alkaloids from the roots of Aconitum yesoense var. macroyesoense as well as 36 semi-synthetic C20-diterpenoid atisine-type alkaloid derivatives against A549 human lung carcinoma cells was examined. Ten acylated alkaloid derivatives, pseudokobusine 11-veratroate (9), 11-anisoate (12), 6,11-dianisoate (14), 11-p-nitrobenzoate (18), 11,15-di-p-nitrobenzoate (22), 11-cinnamate (25) and 11-m-trifluoromethylbenzoate (27), and kobusine 11-p-trifluoromethylbenzoate (35), 11-m-trifluoromethylbenzoate (36) and 11,15-di-p-nitrobenzoate (39), exhibited cytotoxic activity, and 11,15-dianisoylpseudokobusine (16) was found to be the most potent cytotoxic agent. Their IC50 values against A549 cells ranged from 1.72 to 5.44 μM. In the occurrence of cytotoxic effects of atisine-type alkaloids, replacement by an acyl group at both C-11 and C-15 resulted in the enhancement of activity of the parent alkaloids compared to that from having hydroxy groups at this position, and the presence of a hydroxy group at the C-6 position was required for the cytotoxic effects. These acylated alkaloid derivatives inhibit cell growth through G1 arrest

    Transformation of PVP coated silver nanoparticles in a simulated wastewater treatment process and the effect on microbial communities

    Get PDF
    Extent: 18p.Background: Manufactured silver nanoparticles (AgNPs) are one of the most commonly used nanomaterials in consumer goods and consequently their concentrations in wastewater and hence wastewater treatment plants are predicted to increase. We investigated the fate of AgNPs in sludge that was subjected to aerobic and anaerobic treatment and the impact of AgNPs on microbial processes and communities. The initial identification of AgNPs in sludge was carried out using transmission electron microscopy (TEM) with energy dispersive X-ray (EDX) analysis. The solid phase speciation of silver in sludge and wastewater influent was then examined using X-ray absorption spectroscopy (XAS). The effects of transformed AgNPs (mainly Ag-S phases) on nitrification, wastewater microbial populations and, for the first time, methanogenesis was investigated. Results: Sequencing batch reactor experiments and anaerobic batch tests, both demonstrated that nitrification rate and methane production were not affected by the addition of AgNPs [at 2.5 mg Ag L-1 (4.9 g L-1 total suspended solids, TSS) and 183.6 mg Ag kg -1 (2.9 g kg-1 total solids, TS), respectively]. The low toxicity is most likely due to AgNP sulfidation. XAS analysis showed that sulfur bonded Ag was the dominant Ag species in both aerobic (activated sludge) and anaerobic sludge. In AgNP and AgNO3 spiked aerobic sludge, metallic Ag was detected (~15%). However, after anaerobic digestion, Ag(0) was not detected by XAS analysis. Dominant wastewater microbial populations were not affected by AgNPs as determined by DNA extraction and pyrotag sequencing. However, there was a shift in niche populations in both aerobic and anaerobic sludge, with a shift in AgNP treated sludge compared with controls. This is the first time that the impact of transformed AgNPs (mainly Ag-S phases) on anaerobic digestion has been reported. Conclusions: Silver NPs were transformed to Ag-S phases during activated sludge treatment (prior to anaerobic digestion). Transformed AgNPs, at predicted future Ag wastewater concentrations, did not affect nitrification or methanogenesis. Consequently, AgNPs are very unlikely to affect the efficient functioning of wastewater treatment plants. However, AgNPs may negatively affect sub-dominant wastewater microbial communities.Casey L Doolette, Mike J McLaughlin, Jason K Kirby, Damien J Batstone, Hugh H Harris, Huoqing Ge and Geert Corneli

    Distal hereditary motor neuropathy in Korean patients with a small heat shock protein 27 mutation

    No full text
    Distal hereditary motor neuropathy (dHMN) is a heterogeneous disorder characterized by degeneration of motor nerves in the absence of sensory abnormalities. Recently, mutations in the small heat shock protein 27 (HSP27) gene were found to cause dHMN type II or Charcot-Marie-Tooth disease type 2F (CMT2F). The authors studied 151 Korean axonal CMT or dHMN families, and found a large Korean dHMN type II family with the Ser135Phe mutation in HSP27. This mutation was inherited in an autosomal dominant manner, and was well associated with familial members with the dHMN phenotype. This mutation site is located in the α-crystallin domain and is highly conserved between different species. The frequency of this HSP27 mutation in Koreans was 0.6%. Magnetic resonance imaging analysis revealed that fatty infiltrations tended to progressively extend distal to proximal muscles in lower extremities. In addition, fatty infiltrations in thigh muscles progressed to affect posterior and anterior compartments but to lesser extents in medial compartment, which differs from CMT1A patients presenting with severe involvements of posterior and medial compartments but less involvement of anterior compartment. The authors describe the clinical and neuroimaging findings of the first Korean dHMN patients with the HSP27 Ser135Phe mutation. To our knowledge, this is the first report of the neuroimaging findings of dHMN type II
    corecore