72 research outputs found

    An Optical Atomic Clock Based on a Highly Charged Ion

    Full text link
    Optical atomic clocks are the most accurate measurement devices ever constructed and have found many applications in fundamental science and technology. The use of highly charged ions (HCI) as a new class of references for highest accuracy clocks and precision tests of fundamental physics has long been motivated by their extreme atomic properties and reduced sensitivity to perturbations from external electric and magnetic fields compared to singly charged ions or neutral atoms. Here we present the first realisation of this new class of clocks, based on an optical magnetic-dipole transition in Ar13+^{13+}. Its comprehensively evaluated systematic frequency uncertainty of 2.2×10172.2\times10^{-17} is comparable to that of many optical clocks in operation. From clock comparisons we improve by eight and nine orders of magnitude upon the uncertainties for the absolute transition frequency and isotope shift (40^{40}Ar vs. 36^{36}Ar), respectively. These measurements allow us to probe the largely unexplored quantum electrodynamic nuclear recoil, presented as part of improved calculations of the isotope shift which reduce the uncertainty of previous theory by a factor of three. This work establishes forbidden optical transitions in HCI as references for cutting-edge optical clocks and future high-sensitivity searches for physics beyond the standard model.Comment: Main: 20 pages, 3 figures. Supplement: 19 pages, 2 figure

    International comparison of optical frequencies with transportable optical lattice clocks

    Get PDF
    Optical clocks have improved their frequency stability and estimated accuracy by more than two orders of magnitude over the best caesium microwave clocks that realise the SI second. Accordingly, an optical redefinition of the second has been widely discussed, prompting a need for the consistency of optical clocks to be verified worldwide. While satellite frequency links are sufficient to compare microwave clocks, a suitable method for comparing high-performance optical clocks over intercontinental distances is missing. Furthermore, remote comparisons over frequency links face fractional uncertainties of a few 10-18 due to imprecise knowledge of each clock's relativistic redshift, which stems from uncertainty in the geopotential determined at each distant location. Here, we report a landmark campaign towards the era of optical clocks, where, for the first time, state-of-the-art transportable optical clocks from Japan and Europe are brought together to demonstrate international comparisons that require neither a high-performance frequency link nor information on the geopotential difference between remote sites. Conversely, the reproducibility of the clocks after being transported between countries was sufficient to determine geopotential height offsets at the level of 4 cm. Our campaign paves the way for redefining the SI second and has a significant impact on various applications, including tests of general relativity, geodetic sensing for geosciences, precise navigation, and future timing networks

    Guidelines for developing optical clocks with 101810^{-18} fractional frequency uncertainty

    Get PDF
    There has been tremendous progress in the performance of optical frequency standards since the first proposals to carry out precision spectroscopy on trapped, single ions in the 1970s. The estimated fractional frequency uncertainty of today's leading optical standards is currently in the 101810^{-18} range, approximately two orders of magnitude better than that of the best caesium primary frequency standards. This exceptional accuracy and stability is resulting in a growing number of research groups developing optical clocks. While good review papers covering the topic already exist, more practical guidelines are needed as a complement. The purpose of this document is therefore to provide technical guidance for researchers starting in the field of optical clocks. The target audience includes national metrology institutes (NMIs) wanting to set up optical clocks (or subsystems thereof) and PhD students and postdocs entering the field. Another potential audience is academic groups with experience in atomic physics and atom or ion trapping, but with less experience of time and frequency metrology and optical clock requirements. These guidelines have arisen from the scope of the EMPIR project "Optical clocks with 1imes10181 imes 10^{-18} uncertainty" (OC18). Therefore, the examples are from European laboratories even though similar work is carried out all over the world. The goal of OC18 was to push the development of optical clocks by improving each of the necessary subsystems: ultrastable lasers, neutral-atom and single-ion traps, and interrogation techniques. This document shares the knowledge acquired by the OC18 project consortium and gives practical guidance on each of these aspects

    Guidelines for developing optical clocks with 10-18 fractional frequency uncertainty

    Get PDF
    There has been tremendous progress in the performance of optical frequency standards since the first proposals to carry out precision spectroscopy on trapped, single ions in the 1970s. The estimated fractional frequency uncertainty of today's leading optical standards is currently in the 10−18 range, approximately two orders of magnitude better than that of the best caesium primary frequency standards. This exceptional accuracy and stability is resulting in a growing number of research groups developing optical clocks. While good review papers covering the topic already exist, more practical guidelines are needed as a complement. The purpose of this document is therefore to provide technical guidance for researchers starting in the field of optical clocks. The target audience includes national metrology institutes (NMIs) wanting to set up optical clocks (or subsystems thereof) and PhD students and postdocs entering the field. Another potential audience is academic groups with experience in atomic physics and atom or ion trapping, but with less experience of time and frequency metrology and optical clock requirements. These guidelines have arisen from the scope of the EMPIR project "Optical clocks with 1×10−18 uncertainty" (OC18). Therefore, the examples are from European laboratories even though similar work is carried out all over the world. The goal of OC18 was to push the development of optical clocks by improving each of the necessary subsystems: ultrastable lasers, neutral-atom and single-ion traps, and interrogation techniques. This document shares the knowledge acquired by the OC18 project consortium and gives practical guidance on each of these aspects.EU/Horizon2020/EMPIR/E
    corecore