41 research outputs found

    Effects of arbuscular mycorrhizal fungi on resistance to Phytophthora parasitica of citrus seedlings and on growth of Thai honey tangerine scions on citrus rootstocks

    Get PDF
    Thai honey tangerine (Sainamphueng tangerine) is generally grown by grafting on rootstocks of another variety of tangerine or citrus species which may differ in their reaction to beneficial and pathogenic soil organisms. The objectives of this study were to evaluate responses to arbuscular mycorrhizal (AM) fungi and Phytophthora parasitica of different citrus genotypes and the effect of AM fungi on the growth of scions of Thai honey tangerine grafted on different citrus rootstocks including Cleopatra tangerine, lime, pomelo, Swingle citrumelo and Troyer citrange. Significant differences were found among citrus species in the percentage of root colonization by the AM fungi and in the severity of root rot disease when inoculated with P. parasitica alone. Thai honey tangerine was most susceptible and Cleopatra tangerine was most resistant to P. parasitica. Inoculation with AM fungi could reduce disease severity of all the citrus plants from P. parasitica. AM fungi enhanced the growth of seedling to the greatest extent in lime. Variation in the response to AM fungi was found among the scions of Thai honey tangerine on different citrus rootstocks. The scion of Thai honey tangerine grew best on the lime rootstock inoculated with AM fungi.Key words: Phytophthora parasitica, citrus, rootstock, arbuscular mycorrhizal (AM) fungi, root rot

    Comparative study of endophytic and endophytic diazotrophic bacterial communities across rice landraces grown in the highlands of northern Thailand

    Get PDF
    Communities of bacterial endophytes within the rice landraces cultivated in the highlands of northern Thailand were studied using fingerprinting data of 16S rRNA and nifH genes profiling by polymerase chain reaction–denaturing gradient gel electrophoresis. The bacterial communities’ richness, diversity index, evenness, and stability were varied depending on the plant tissues, stages of growth, and rice cultivars. These indices for the endophytic diazotrophic bacteria within the landrace rice Bue Wah Bo were significantly the lowest. The endophytic bacteria revealed greater diversity by cluster analysis with seven clusters compared to the endophytic diazotrophic bacteria (three clusters). Principal component analysis suggested that the endophytic bacteria showed that the community structures across the rice landraces had a higher stability than those of the endophytic diazotrophic bacteria. Uncultured bacteria were found dominantly in both bacterial communities, while higher generic varieties were observed in the endophytic diazotrophic bacterial community. These differences in bacterial communities might be influenced either by genetic variation in the rice landraces or the rice cultivation system, where the nitrogen input affects the endophytic diazotrophic bacterial community

    Iron and zinc variation along the grain length of different Thai rice varieties

    Get PDF
    ABSTRACT: This study examined the distribution of iron (Fe) and zinc (Zn) along the grain length of seven rice varieties. The experiment was conducted in a completely randomized design with two factors (variety and grain fraction) and three independent replications. Samples of brown and white rice of six common Thai rice varieties and a high Fe and Zn variety, IR68144, were transversely cut into three fractions per grain (basal, middle, and distal) with approximately the same length in each fraction. The concentration of Fe and Zn was determined by the dry ashing method and quantified using atomic absorption spectrometry. The middle grain fraction of brown rice was found to have the lowest Fe and Zn with greater concentration of Fe and Zn in the basal (embryo end) than the other fractions. The rice varieties differed in the amount of Fe and Zn allocated to different fractions of the endosperm (white rice). The potential for loss of Fe and Zn during milling due to their uneven distribution along the grain length will become more significant when higher nutrient concentrations are involved, such as those achieved by biofortification efforts. Micronutrient distribution needs to be taken into consideration to ensure that rice consumers benefit from Fe and Zn biofortification

    The impact of foliar applied zinc fertilizer on zinc and phytate accumulation in dorsal and ventral grain sections of four thai rice varieties with different grain zinc

    Get PDF
    © 2017 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.This study investigated the effect of foliar applied zinc (Zn) on the distribution of Zn and phytate in rice grain between four Thai rice varieties that differ in grain Zn. Foliar Zn application at 0.5% ZnSO4 was applied at flowering and the early milky stage compared with non-foliar applied Zn. Among the high-yielding, low grain Zn varieties (CNT1 and RD21), foliar applied Zn increased Zn concentration in both dorsal and ventral sections of unpolished rice by up to 17.7 and 14.3%. In the low-yielding, high grain Zn varieties (KPK and NR), Zn concentration increased by 11% in the dorsal section of NR, but no effect was found in both sections of KPK. In polished rice, the Zn concentration increased by 20% in both sections but it was increased only in the ventral section of KPK and CNT1 by 21.0% and 25.0% respectively, while there was an increase of 12.5% in the dorsal section of RD21. The phytate in the seed fractions was measured as an indication for Zn bioavailability within humans. A lower phytate concentration was observed after foliar Zn application in both unpolished and polished rice, indicating the potential for a higher bioavailability of Zn in the rice grain

    Transforming Subsistence Cropping in Asia

    No full text
    The Green Revolution has benefited many people in Asia, but not everyone. This paper examines how many farmers have increased their productivity with more intensive cropping systems of fruit, vegetables, and in some cases, flowers. Total area under these crops more than tripled between 1977 and 2003. Case studies to highlight the transformation include vegetable production to feed Asia’s booming cities, diversification of export crops in Thailand, vegetable production in Malaysia’s Cameron Highlands, flower production in Yunnan Province of China and opium replacement in the Golden Triangle. Access to the market is necessary for transformation, but changes are also driven by farmers’ own innovations combined with contributions from last century’s crop science, from phytohormones to hybrid technology. Other inputs are irrigation, fertilizers and pesticides, with overuse of the last two a serious threat to the environment as well as to human health. Concerns have also been raised regarding soil erosion caused by cropping on steep slopes. In addition to building roads and airports, government support has also come in the form of cheap credit for orchard establishment and more efficient quarantine procedures to facilitate exports. Cross-border trade that brings opportunities to inaccessible border regions will be further enhanced by regional free trade policy, particularly when liberalization of trade in fruit and vegetables is specified such as that just signed by ASEAN and China. Finally, a case is made for the need to improve cropping systems in less favorable environment with limited access to the market and the means through which crop scientists can work with farmers to bring this about

    Transforming Subsistence Cropping in Asia

    No full text

    Boron Deficiency in Two Wheat Genotypes in a Warm, Subtropical Region

    No full text

    Intercropping Maize With Legumes for Sustainable Highland Maize Production

    No full text
    Residue burning to prepare soil for maize growing deprives the soil of both protective cover and organic matter, and it exacerbates environmental issues such as Southeast Asia's haze problem. This paper reports on a study that evaluated the effectiveness of maize/legume intercropping as an alternative to maize cultivation with residue burning. Cowpea (Vigna unguiculata), mung bean (V. radiata), rice bean (V. umbellata), and lablab (Lablab purpureus) were sown into a standing maize crop 30 days before harvest, and the results were compared with a maize crop grown using residue burning as the method for land preparation at Pang Da Agricultural Station in Chiang Mai, Thailand, in a replicated trial conducted over 3 growing seasons from 2012 to 2014. Intercropping increased maize grain yield by 31–53% and left 70–170% more residue containing 113–230% more nitrogen than the maize sown after residue burning, depending on the legume, and decreased weed dry weight by two-thirds after 2 seasons. Soil biodiversity was enriched by the intercrops, with a doubling in the spore density of arbuscular mycorrhizal fungi in the root-zone soil and increased abundance, diversity (Shannon index), and richness of the soil macrofauna. The abundance of soil animals increased with crop residue dry weight (r = 0.90, P < 0.05) and nitrogen content (r = 0.98, P < 0.01). The effect of intercropping on maize grain yield and accumulation of residue and nitrogen were then confirmed in a participatory experiment involving farmers in 2 highland villages in the Phrao and Chiang Dao districts of Chiang Mai Province with maize and rice bean in 2015. The effects of maize/legume intercropping—increased nitrogen accumulation and crop residue, enhanced soil biodiversity, suppression of weeds, and protection of the soil surface, which enabled the maize to be sown without land clearing with fire—should all contribute to sustainable highland maize production

    Intercropping Maize With Legumes for Sustainable Highland Maize Production

    No full text

    Shifting cultivation in Thailand Its current situation and dynamics in the context of highland development

    No full text
    IIED's Forestry and Land Use Programme. Includes bibliographical referencesAvailable from British Library Document Supply Centre- DSC:4363. 805707(no 4) / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo
    corecore