18 research outputs found

    Investigation of Proline Utilization A: Kinetic Analysis of Substrate Channel-blocking Mutants and Creation of a Trifunctional Chimera Enzyme

    Get PDF
    Proline metabolism is known to be involved in many cellular processes such as cell signaling, cellular redox balance, and cell survival. One of the enzymes involved in proline catabolism, proline utilization A, plays a role in oxidizing proline to glutamate in a two-step oxidation pathway involving enzymes proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate dehydrogenase (P5CDH). Intermediate P5C/GSA has been shown to use an intramolecular channel to move from the PRODH active site to the P5CDH active site in a phenomenon called substrate channeling. In this work, one of the main objectives was to learn more about the channel usage. Chapter 2 demonstrates that making mutations along the channel can impede passage of intermediate, and helps describe how P5C accesses the P5CDH domain. A second objective was to gain understanding of the structure-function relationship of the DNA-binding domain of trifunctional PutAs. Chapter 3 discusses how a chimera enzyme was created by attaching the DNA-binding domain of a trifunctional PutA to a bifunctional PutA in order to make an artificial trifunctional PutA. These results help to better understand how the DNA-binding domain orientation is important and provide clues that more residues from the DNA-binding domain may be necessary for DNA-binding in vivo. Chapter 4 explores a new ubiquinone analog, and provides kinetic evidence suggesting it is a substrate for the PRODH domain. Additionally Geobacter sulfurreducens was kinetically characterized and was shown to substrate channel. Collectively, this dissertation aims to provide a further understanding of usage of the substrate channel in proline oxidation and insight into the structure-function relationship of trifunctional PutAs and functional switching. Advisor: Donald F. Becke

    First Evidence for Substrate Channeling between Proline Catabolic Enzymes \u3ci\u3eA VALIDATION OF DOMAIN FUSION ANALYSIS FOR PREDICTING PROTEIN-PROTEIN INTERACTIONS\u3c/i\u3e

    Get PDF
    Background: PRODH and P5CDH from Thermus thermophilus are monofunctional enzymes in proline catabolism. Results: Steady-state kinetics and intermediate trapping data show the PRODH and P5CDH reactions are coupled by a channeling step. Conclusion: Substrate channeling in monofunctional enzymes is achieved via weak interactions. Significance: Evidence for substrate channeling between monofunctional proline catabolic enzymes is shown and confirms the Rosetta Stone hypothesis

    First Evidence for Substrate Channeling between Proline Catabolic Enzymes \u3ci\u3eA VALIDATION OF DOMAIN FUSION ANALYSIS FOR PREDICTING PROTEIN-PROTEIN INTERACTIONS\u3c/i\u3e

    Get PDF
    Background: PRODH and P5CDH from Thermus thermophilus are monofunctional enzymes in proline catabolism. Results: Steady-state kinetics and intermediate trapping data show the PRODH and P5CDH reactions are coupled by a channeling step. Conclusion: Substrate channeling in monofunctional enzymes is achieved via weak interactions. Significance: Evidence for substrate channeling between monofunctional proline catabolic enzymes is shown and confirms the Rosetta Stone hypothesis

    Substrate channeling in proline metabolism

    No full text

    Investigation of proline utilization A: Kinetic analysis of substrate channel-blocking mutants and creation of a trifunctional chimera enzyme

    Get PDF
    Proline metabolism is known to be involved in many cellular processes such as cell signaling, cellular redox balance, and cell survival. One of the enzymes involved in proline catabolism, proline utilization A, plays a role in oxidizing proline to glutamate in a two-step oxidation pathway involving enzymes proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate dehydrogenase (P5CDH). Intermediate P5C/GSA has been shown to use an intramolecular channel to move from the PRODH active site to the P5CDH active site in a phenomenon called substrate channeling. In this work, one of the main objectives was to learn more about the channel usage. Chapter 2 demonstrates that making mutations along the channel can impede passage of intermediate, and helps describe how P5C accesses the P5CDH domain. A second objective was to gain understanding of the structure-function relationship of the DNA-binding domain of trifunctional PutAs. Chapter 3 discusses how a chimera enzyme was created by attaching the DNA-binding domain of a trifunctional PutA to a bifunctional PutA in order to make an artificial trifunctional PutA. These results help to better understand how the DNA-binding domain orientation is important and provide clues that more residues from the DNA-binding domain may be necessary for DNA-binding in vivo. Chapter 4 explores a new ubiquinone analog, and provides kinetic evidence suggesting it is a substrate for the PRODH domain. Additionally Geobacter sulfurreducens was kinetically characterized and was shown to substrate channel. Collectively, this dissertation aims to provide a further understanding of usage of the substrate channel in proline oxidation and insight into the structure-function relationship of trifunctional PutAs and functional switching

    Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site

    Get PDF
    Proline utilization A (PutA) proteins are bifunctional peripheral membrane flavoenzymes that catalyze the oxidation of L-proline to L-glutamate by the sequential activities of proline dehydrogenase and aldehyde dehydrogenase domains. Located at the inner membrane of Gram-negative bacteria, PutAs play a major role in energy metabolism by coupling the oxidation of proline imported from the environment to the reduction of membrane-associated quinones. Here, we report seven crystal structures of the 1,004- residue PutA from Geobacter sulfurreducens, along with determination of the protein oligomeric state by small-angle X-ray scattering and kinetic characterization of substrate channeling and quinone reduction. The structures reveal an elaborate and dynamic tunnel system featuring a 75-Ã…-long tunnel that links the two active sites and six smaller tunnels that connect the main tunnel to the bulk medium. The locations of these tunnels and their responses to ligand binding and flavin reduction suggest hypotheses about how proline, water, and quinones enter the tunnel system and where L-glutamate exits. Kinetic measurements show that glutamate production from proline occurs without a lag phase, consistent with substrate channeling and implying that the observed tunnel is functionally relevant. Furthermore, the structure of reduced PutA complexed with menadione bisulfite reveals the elusive quinone-binding site. The benzoquinone binds within 4.0 Ã… of the flavin si face, consistent with direct electron transfer. The location of the quinone site implies that the concave surface of the PutA dimer approaches the membrane. Altogether, these results provide insight into how PutAs couple proline oxidation to quinone reduction

    Substrate channeling in proline metabolism

    Get PDF
    Proline metabolism is an important pathway that has relevance in several cellular functions such as redox balance, apoptosis, and cell survival. Results from different groups have indicated that substrate channeling of proline metabolic intermediates may be a critical mechanism. One intermediate is pyrroline-5-carboxylate (P5C), which upon hydrolysis opens to glutamic semialdehyde (GSA). Recent structural and kinetic evidence indicate substrate channeling of P5C/ GSA occurs in the proline catabolic pathway between the proline dehydrogenase and P5C dehydrogenase active sites of bifunctional proline utilization A (PutA). Substrate channeling in PutA is proposed to facilitate the hydrolysis of P5C to GSA which is unfavorable at physiological pH. The second intermediate, gamma-glutamyl phosphate, is part of the proline biosynthetic pathway and is extremely labile. Substrate channeling of gamma-glutamyl phosphate is thought to be necessary to protect it from bulk solvent. Because of the unfavorable equilibrium of P5C/GSA and the reactivity of gamma-glutamyl phosphate, substrate channeling likely improves the efficiency of proline metabolism. Here, we outline general strategies for testing substrate channeling and review the evidence for channeling in proline metabolism

    Kinetic and Structural Characterization of Tunnel-Perturbing Mutants in \u3ci\u3eBradyrhizobium japonicum\u3c/i\u3e Proline Utilization A

    Get PDF
    Proline utilization A from Bradyrhizobium japonicum (BjPutA) is a bifunctional flavoenzyme that catalyzes the oxidation of proline to glutamate using fused proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate dehydrogenase (P5CDH) domains. Recent crystal structures and kinetic data suggest an intramolecular channel connects the two active sites, promoting substrate channeling of the intermediate Δ1-pyrroline-5-carboxylate/glutamate-γ-semialdehyde (P5C/GSA). In this work, the structure of the channel was explored by inserting large side chain residues at four positions along the channel in BjPutA. Kinetic analysis of the different mutants revealed replacement of D779 with Tyr (D779Y) or Trp (D779W) significantly decreased the overall rate of the PRODH−P5CDH channeling reaction. X-ray crystal structures of D779Y and D779W revealed that the large side chains caused a constriction in the central section of the tunnel, thus likely impeding the travel of P5C/GSA in the channel. The D779Y and D779W mutants have PRODH activity similar to that of wild-type BjPutA but exhibit significantly lower P5CDH activity, suggesting that exogenous P5C/GSA enters the channel upstream of Asp779. Replacement of nearby Asp778 with Tyr (D778Y) did not impact BjPutA channeling activity. Consistent with the kinetic results, the X-ray crystal structure of D778Y shows that the main channel pathway is not impacted; however, an off-cavity pathway is closed off from the channel. These findings provide evidence that the off-cavity pathway is not essential for substrate channeling in BjPutA

    Engineering a trifunctional proline utilization A chimaera by fusing a DNA-binding domain to a bifunctional PutA

    Get PDF
    Proline utilization A (PutA) is a bifunctional flavoenzyme with proline dehydrogenase (PRODH) and Δ1-pyrroline-5- carboxylate (P5C) dehydrogenase (P5CDH) domains that catalyses the two-step oxidation of proline to glutamate. Trifunctional PutAs also have an N-terminal ribbon–helix–helix (RHH) DNA-binding domain and moonlight as autogenous transcriptional repressors of the put regulon. A unique property of trifunctional PutA is the ability to switch functions from DNA-bound repressor to membrane-associated enzyme in response to cellular nutritional needs and proline availability. In the present study, we attempt to construct a trifunctional PutA by fusing the RHH domain of Escherichia coli PutA (EcRHH) to the bifunctional Rhodobacter capsulatus PutA (RcPutA) in order to explore the modular design of functional switching in trifunctional PutAs. The EcRHH–RcPutA chimaera retains the catalytic properties of RcPutA while acquiring the oligomeric state, quaternary structure and DNA-binding properties of EcPutA. Furthermore, the EcRHH–RcPutA chimaera exhibits proline-induced lipid association, which is a fundamental characteristic of functional switching. Unexpectedly, RcPutA lipid binding is also activated by proline, which shows for the first time that bifunctional PutAs exhibit a limited form of functional switching. Altogether, these results suggest that the C-terminal domain (CTD), which is conserved by trifunctional PutAs and certain bifunctional PutAs, is essential for functional switching in trifunctional PutAs
    corecore