21 research outputs found

    Liver Resection for Primary Hepatic Angiosarcoma: Bicentric Analysis of a Challenging Entity.

    Get PDF
    Primary hepatic angiosarcoma (PHA) is a rare malignant tumor of the liver, and data on patient outcome after surgical treatment are scarce. The aim of this study was to evaluate postoperative morbidity and overall survival (OS) of patients who underwent hepatectomy for PHA. This is a bicentric retrospective analysis of all consecutive patients who underwent liver resection in curative intent for PHA between 2012 and 2019 at the University Hospital of Muenster and the University Hospital of Bern. Nine patients (five female, four male) were included from both centers. Median age was 72 years (44-82). Most lesions (77.8%) were larger than 5 cm, and mean size of the biggest lesion was 9.4 ± 4.5 cm. Major hepatectomy was performed in four (44.4%), and radical resection (R0) was achieved in six (66.7%) patients. Postoperative complication rate was 88.8%, including 44.4% higher than 3a in the Clavien-Dindo classification. OS survival rates at 1, 2, and 3 years were 44.4%, 22.2%, and 12.5%, respectively, and median OS was 5 months. OS was significantly better after radical resection (R0: 15 months vs. R1: 0 months, p = 0.04), whereas presentation with tumor rupture at diagnosis was associated with the worst OS (0 months vs. 15 months, p = 0.005). Disease recurrence occurred in three patients (33.3%) between three and seven months after surgery. Radical resection remains the only potentially curative treatment option for PHA. However, postoperative morbidity is high, and the overall prognosis remains poor. Multimodal therapy options and management strategies are urgently needed and could improve the prognosis of patients suffering from PHA in the future

    In vitro recellularization of decellularized bovine carotid arteries using human endothelial colony forming cells

    Get PDF
    Background: Many patients suffering from peripheral arterial disease (PAD) are dependent on bypass surgery. However, in some patients no suitable replacements (i.e. autologous or prosthetic bypass grafts) are available. Advances have been made to develop autologous tissue engineered vascular grafts (TEVG) using endothelial colony forming cells (ECFC) obtained by peripheral blood draw in large animal trials. Clinical translation of this technique, however, still requires additional data for usability of isolated ECFC from high cardiovascular risk patients. Bovine carotid arteries (BCA) were decellularized using a combined SDS (sodium dodecyl sulfate) -free mechanical-osmotic-enzymatic-detergent approach to show the feasibility of xenogenous vessel decellularization. Decellularized BCA chips were seeded with human ECFC, isolated from a high cardiovascular risk patient group, suffering from diabetes, hypertension and/or chronic renal failure. ECFC were cultured alone or in coculture with rat or human mesenchymal stromal cells (rMSC/hMSC). Decellularized BCA chips were evaluated for biochemical, histological and mechanical properties. Successful isolation of ECFC and recellularization capabilities were analyzed by histology. Results: Decellularized BCA showed retained extracellular matrix (ECM) composition and mechanical properties upon cell removal. Isolation of ECFC from the intended target group was successfully performed (80% isolation efficiency). Isolated cells showed a typical ECFC-phenotype. Upon recellularization, co-seeding of patient-isolated ECFC with rMSC/hMSC and further incubation was successful for 14 (n = 9) and 23 (n = 5) days. Reendothelialization (rMSC) and partial reendothelialization (hMSC) was achieved. Seeded cells were CD31 and vWF positive, however, human cells were detectable for up to 14 days in xenogenic cell-culture only. Seeding of ECFC without rMSC was not successful. Conclusion: Using our refined decellularization process we generated easily obtainable TEVG with retained ECM- and mechanical quality, serving as a platform to develop small-diameter (< 6 mm) TEVG. ECFC isolation from the cardiovascular risk target group is possible and sufficient. Survival of diabetic ECFC appears to be highly dependent on perivascular support by rMSC/hMSC under static conditions. ECFC survival was limited to 14 days post seeding

    Totally implantable venous access port insertion via open Seldinger approach of the internal jugular vein—a retrospective risk stratification of 500 consecutive patients

    No full text
    Purpose!#!Modern oncological treatment algorithms require a central venous device in form of a totally implantable venous access port (TIVAP). While most commonly used techniques are surgical cutdown of the cephalic vein or percutaneous puncture of the subclavian vein, there are a relevant number of patients in which an additional strategy is needed. The aim of the current study is to present a surgical technique for TIVAP implantation via an open Seldinger approach of the internal jugular vein and to characterize risk factors, associated with primary failure as well as short- (&amp;lt; 30 days) and long-term (&amp;gt; 30 days) complications.!##!Methods!#!A total of 500 patients were included and followed up for 12 months. Demographic and intraoperative data and short- as well as long-term complications were extracted. Primary endpoint was TIVAP removal due to complication. Logistic regression analysis was used to analyze associated risk factors.!##!Results!#!Surgery was primarily successful in all cases, while success was defined as functional (positive aspiration and infusion test) TIVAP which was implanted via open Seldinger approach of the jugular vein at the intended site. TIVAP removal due to complications during the 1st year occurred in 28 cases (5.6%) while a total of 4 (0.8%) intraoperative complications were noted. Rates for short- and long-term complications were 0.8% and 6.6%, respectively.!##!Conclusion!#!While the presented technique requires relatively long procedure times, it is a safe and reliable method for TIVAP implantation. Our results might help to further introduce the presented technique as a secondary approach in modern TIVAP surgery

    Unlike in Children with Allergic Asthma, IgE Transcripts from Preschool Children with Atopic Dermatitis Display Signs of Superantigen-Driven Activation

    No full text
    The IgE repertoire in children with asthma reflects an adaptive B cell response, indicative of Ag-driven selection. However, the same might not apply to atopic dermatitis, which is often the first manifestation of atopy. The objective of our present study was to characterize the IgE repertoire of preschool children with atopic dermatitis with regard to signs of superantigen-like activation, clonal relationship, and indications of Ag selection. Total RNA was isolated from PBMCs of five children with atopic dermatitis. IgE transcripts were amplified, cloned, and sequenced using RT-PCR. We obtained 200 functional IgE sequences, which were compared with 1140 sequences from 11 children with asthma. Whereas variable gene segment of the H Ig chain (V-H) gene usage in asthma reflected germline distribution, IgE transcripts from children with atopic dermatitis displayed a dominance of the otherwise scarcely expressed V(H)2 and V(H)4 family. Whereas IgE transcripts from children with asthma were highly mutated (7.2%), somatic mutation rate in atopic dermatitis was less than half as high (3.4%). Moreover, the proportion of transcripts that were indicative of Ag selection was reduced to 11% in atopic dermatitis (24% in asthma). In summary, IgE repertoires vary significantly between children with different atopic diseases. Compared with children with asthma, IgE transcripts from preschool children with atopic dermatitis are significantly less mutated, clonally less focused, and less indicative of Ag selection. We consider our data reconcilable with the hypothesis that a superantigen-like activation contributes to the maturation and selection of the IgE repertoire in atopic dermatitis
    corecore